
UNCLASSIFIED

AD\ 256 86

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLAS JFIED

I

NOTICE: When goverment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procuremnt operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formlated, furnished, or in any way
supplied the said dravings, specifications, or other
data is not to be regarded by implication or other-
wise as in any Innner licensing the holder or any
other person or corporation, or conveying any rigbts
or permission to imnufacture, use or sell any
patented invention that my in any vey be related
thereto.

00

co~

II,

I AA

*1 Computation Center

Progress Report

RESEARCH AVD DEVELOPMENT IN FROGAIMING STUDY
ASS IGNMENTS

Contract No. DA-36-039 SO-75081
File No. 0195.PH-58-91 (44,61)

DA Task Number 3B28-O4-OOI-O-0.

I Final Rep)rt
Ii' Flow Charts

III. -rogramming Manual

22 Febuary 1961.
for

UNITEU) STAFKES ARMY SIGNAL RD][ABCRATORY
MIT M WOUTH , NEW 3BRSEY

by

A, J. Perlis

ASTIA AVAILABILITY NOTICE

Qualified requestors may obtain copies of this report from ASTIA

Carnegie Inetitute of Technology
Schenley Park, Pittsburgh 13, Pennsylvania

2 vtr..t an Addendca

Final. Autpxt

2ontrvact No, MA-93&019 NOW!,R08
DA Tauk it ue XVfom23 b~4Oif4 6 ,

Ontower :194. 191.

NII? HOWEK:S APM IGNA R&Ik LABOR7ATORY
FORTXOT1X)UR 9 EW J'YESEY

VMSif& requzano ray rbtain copi~es of thIs rcsporz fromn At3TIA,.

Schocoley Oil.:' 'Httsburgh .3. lonnsyivanle

Errata and Addenda to the Final ert DA-36:039 S

ert I

1o p2,L 7 Amplification

The input is in "string" format. iee, as a concatenation of ch'.

from tne 20AL alphabet, The only formal structure to such a string

it has a beginning (ist character) and an end(last character).

The transformation to "tree" form is accomplished by differentia

behav.or of the 20A translator on observing certain character combi

in the6 input string. The itree" form has punctuation introduced --

and")" which permits the doomposition of the input string into ler

(and thereby sub-levels, etco)

2. p2, L 12

A terminal such. ^I A tezxinal such time0

3o p3, L 16 Aplification

"Atoic" machine instructUions are those wired in comands, or s,

even those precoMposed in fJaed or-der from such coifands,

4. p5, L 6 Amplification

°°- is a metalinguistic connective meaning " is defined as",, Le.

a'.O.b means a is defined as b.

5o p89 , 14

<identifier .,- :4ettor ,,o (etter>l <Identif ier <Ietter>/

4idsntifier<dJ gt>j

<special register identifier

6. p 11,, L4- 2

1L ao. 'I means a in replaced by b

20 L a- moans 8th line from the bottom

7. p 12, L 9

8. L 5- Amplification

Element sequencing is explained in detail in (7- Suffice it to say

here that its purpose is to examine symbols independant&y of the structures

in which they are imbedded. Word and list sequencing on the other hand

are structure dependant,

9. p17, L 12 inert (k,v) -' isrt (k,v)

Amplification: if k is missing, it is assumed to be 1,

i0 pl8, LI o-3,3 Arithmetic Expressions

. L4 <ri ayooo

<primary>:-,= . (arithmetic expression>)/

<row priMaryV> (co0lumn primary>

note: for use of <row primary>, and <olumn prime,4 see section 5,,2.3,4

12. p28, L 13 Amplification

32, 767 - 215_1 and obviously assumes a computer with that sise, memory0

13. L 22 ff Amplification

3o7o2o1 The vertical bar here used is not to be confused with the

metalinguistic connective "'or" This meaning is given in 3 7°3°
.e, I * 4-j /) /t? -Cwt "-,.- g?-C.,,-,(- -.

14. p29, L 4 about them. '+about them (see page 43).

15. p37j, L 3 Statement if % statement it

F-4l, L 7 These examples correspond

These examples of procedure statements correspond to examples

of procedure deolarations given in section 5o4.2.

3,

17. p42, L 6

Procedure heading "py procedure declaration heading

18. p4, L 1 469o9o*4o91oo

19. L 11 (ACt, Poo'* --,,,(A t, P 0 00

200 p47, L 2 insertion after

<storage.fucto>:*-4ritmetic expression>

21. L 6 insertion after

<iound pair set? [<bound pair list: <Storage f mction>

6 <ound pair list>]

22,, L 7 Ebound pair, list>]) .- : ?bounid pair set)7fl

23., L 15 insertion after

see 5o2o3o4o for the semantics of 4torage function>5

24. p48, L 2 insertion after

5.2o3,4. Storage function:

An arithmetic expreassion which is a mapping of a two dimensional

array of information into a one dimensional ordered set of information

A systemactic method of specifying the row and colum indices of the

elements in a two dimensional airay has to be made. While this can be done

by defining the staiaie function as a procedure with formal parameters this

complexity is absurd since very few uses of storage functions will requIe

the procedure mechaniam, Thus one should specialize on two characters

representing the row, eog., , and columq,, e~g., k,, indices for which sub-

stiW.Aeie is made y evaluation of the expressibn each time and element of

4.

the array is to be identified. The difintiat af tione special characters

can be imbedded in the syntax by adding to the definition of arithmetic

expressiofls the synt.etic types row primary> and <column primary> an

in section 3o3.L The characters e and (or their equivalent&) can be

addbd to the 20 A L alphabet,,

25° p5O, L 14 ; <specification part>.,, -'--

<value part) <speification part>

26. p 52, L 14 The use of ooo

The use of Procedure Statements (see 4,o7) and / or Function Designators

(see 3.2)

27. p 55,L 9, L deletes

Partfl.l

28. p 99, J 2- discussed and " discussed (see Part I) and

29. p 100, L 1 delete

30. L 1- or combination '-or combination of •

31o p1029 L 5 101o.1--101

32. p1120 L 5 0 olxi) (divides ...

.. ,.o ax< 0I)/ A-I (divides oo

33. pU 2 , L 7 bein if (divides o

begin if --r (divides

34. p113, L 1 delete

35, L 5 insert

where * is used to represent multiplication

36. p118, L 10 insert

Herev the last two digits repre. the exponent, p, of a floating

point number where the exponent is represented as p + 50,

37° p 120, L 8 ob Pb ia ia>ooo .-.

o obria A ia a

38, L 10 ia ba--ViaYba

39 L Ii ia)fraPtia) A /a

4f-0 L 12 :- (ba bb); -- V

-'V(baA bb);

4L. p 1229 L 22 insert

Vt notation represents intervening statements immaterial to

the points under discussiono

420 p 123v L 12 :=C 2 - B - -=C + 2 - B;

43. p 125, L 7 insert after

where TI(X) - 3 p 2 + p

and T2 (X) p3 2 p

44o L 14 R:=p 0ooo'R:= pf2 +3 x p;

45, L 14 R:xpo ---)PS:= pt 3 2 x p;

46, p130, L3- VA r:j 2 VBD30- VAfi +VB i;

47. p 131, L 14 amplification

p - 101 (2) and p - 5 (0)

man

p - 101 in binary and pp 5 in decimal, respectively

48. Bibliography append

7, Evans, A. Jr0 ; Perlist A, J.; Van Zoerenp H0; The use of threaded

lists in constructing a combined ALGOL and machine-like assembly

processor Camn, ACM 4 (January 1961, 36-39

Part IL

49, p 58v L I a 20 L a 20 L running

50 p 59, bottom append

where LU denotes a blank, and Bt denotes the block tag,

51 p 60 L 8 insert

where CBT is the Code Block Table.

52 L 6- notation. r-

-. notation and 6is some (at most) binary operator.

53c L 5-- missing,

, missing depending on the operator.

54. p6I L 10 2 delete

55. L 5 or all-eof all

56, L 8 insert

subtraction

57., L 20 insert

J jump

go to transfer

58. p 6 2 , L 9- 'te rght of -the left of

59, p 64 page number should be 63

60 p 639 L 5 the &-code -%- the &S code

L7 " 0

L 1.4 in IS-Apin the input qequenc IS

L 18 in., I C ana W'-Iin , IS and MS..

L 21 will be-4@will often be

9 L 2- of the form^of that form

70

61. p 64p L 8- insert

Note: In the following &and o I and IS, refer interchangeably

to output and input sequences, respectively. Similarly isrt and insrt

are used interchangeably.

62° bottom

Note: 'Blend' in inSerted by the main eelaration and means block end.

63. p 6& L 6 insert

MT I is a transfer to the rotine *5 st.c'h that P upon completion

returns to the statement following the statement MT

,L I- replace by

isrt (oC~, next (6f r, :bend 0

Notes: The verticali is used in the sense of address expressions

(see section 3o7)

The routines isrt(K) and next (0) are defined in reference 3 and.

essentially cause an empty site to be inserted following the siteX(;

and the site one beyond the pointer forit to be referenced, respectivey'-

64. p66, L2=

Note: the digit 1 is occasionally used in place of the Value true;

and similarly so for 0 and false,

65, p 68,o L 5 next (OCL : ney(o ,#):-

66, p 689 L 3 K: -i ' K:-K+I

67. p 68p L 5 Note:

Cstands for the operator which is to be compiled in this line of

code, It is generated in the expression analyzer,

68. p 68, L 13 until 12 - niml 13

69, p 689 L 15,ff. should read

comment, 9declarationg handle ,lists of identifier possessing the

same declared attributes and, in particular, handles array declarations.

In case of

70 p 68, L 5- * column#-* column, for a rectangular array,

71. p .68, L 5- insert:

(2) of 1 'dimension, A Em:nJ thera is computed

space;. abs (n-m+l)

base - storage base - 1

storage base . storage base + space

and base is stored in the address assigned to A, The mapping function

for A&3 is then base + i.

72. p 70, L -4 trueo rue

- P 70 . r10- ...t -.

74,p 71, L 3 MT mr

75. p 71, L 99 lO

String transfer is the table of Macro identifiers String transfer

mQlis the number of characters 3n the Macro.

76, p 719 L 11 insert after end:

(this indicates the end of the Macro declaration)

77. p 71p L 12 delta r3T--%*delta

J ::- line number (library table (A))

9.

79. p 71, L 3- should read

J := field (2, library table UJ)

8q.o p 729 L I should read

next (next (I [,0)) :-s procedure

81. p 72, L 3 Note:

copy serves to copy the list whose starting address is in J

into I

82° p 72, L 7- insert after 9thereg:

is in the output sequence

830 p 72p L 3- a 0 (1) ' a -0 (i), respectively

84o p 72, L I1 b 0 (1) t ., - 0 (1), respectively

85.,, p 73 relaced entirely by: (See page 10o)

~10o

The catalogue of actions in the four cases are given in the following

table:

forA it j

Declaration Call

a O a O, b -0

generate code for

Pass I A :- base A + j + A+l * i

A + 1: - Column

Pass 2 no action execution of above

a 0, b - 1
generate code for:

Pass 1 A - base A + J + A+*+6 - if local identi
or fier

A + 1: - column computed, in BoA "rotitine and

store 8, in I. and compute

A + j + A+l * i + I.

Pass 2 no action execution of above

a - i b - 0 (dynamic declaration, not inide

procedure)
code for

Pass l.=generate code for A: a base A + j + A+1 * i

A+I: column

Pass 2 execution of above execution of above

a -1, b -I

Pass l-generate code for A(": base

A + 1 J:- column A + J + +l)*iif

or local identifie.
compute . in BoA0 .,.routine

Store A in I.

Pass 2 execution of above execution of above

86. p 74, L 3 Note:

P [iJ refers to the i t h line of a table containing either an

operator or operand of the expression being analyzed. There is

assumed to exist an internal list of operators whose order specified

the hierarchy of their execution order, eogo,

meanstdone before * before / etc.

87. p 74, L 12 delimiter ' '9 P

j 7~, :~digit, - :- decimal digit

'- : 10 (the notation ror base 10)

89. p 75, L 5- Note:

mojo means code line m. j is an index

90, p 77 L 4 e(1); -v e(1));

91. p 77 L 3 ff Nate:

In each instance the argument p, of code line ((9) should be

delimited by to indicate the nature of the substitutions being

employed,,

92. p77 L 7 +g~ P+2]- A PU ~+ 2J

93o p77s L 12 "M9 P

94. p 77, L 14 should read

if PI " Expression terminal [k])i LS to W/(.ression analyzer)

950 p 77, L 19 1. . I.

96. p 789 L I

97. p 789 L 2 (R k])- (L)

98. p 78,L3 to (LkJ 10" go to 9(ti))

99. p 79, L 10 should read

L M..tq I (expression analyzer) end

100. p 80, L -3 T,,BA -MT./ (BA)

,LII.
pL 1-

p 81, L 9-

p 81, Li1-

101. p 81, L 2- Ex 16- -E x 20

102. p 81, L 3- P [i-53--4(Pli-5J)

1030 p 82, L2 EX 16'-1FA 20

104. p 83, L 10- should read

105. p 86, L 4 b n : I -ibggln I

106. p 86, L 1.3 for list '-for,list

107o p 86, L 2 next (iY1 -next 0(,#3)

108. p 88, L 14 should read

i f generated bycouma

109. p 89, L 11

110 90 L 9 - (T [H]) , (IT [H)

11o p 90, L 8- should read

B1 2: if marker (IT LH]) '(9

112. p 90, L 7- should read

thn.kgjj& H:- -1; go to B12 end

113, p 90, L 6- n ber >number (4 >

-14. p 91, L 1ff Note:

T and IT are used interchangeably for the identifier table.

115. p 91, L 13- norm field -onorm (field

1166 p 92, L 2 - is A-is in A

117o p 94, L 1 operand o4operator

118. p 94 L 7,L 8K z]-

119. -p 94, L 17 seq N (G,--seqw (G,

s" N (V, eq-V (s ,
120. p 96.1 L 4- (-. l~e v -L.g

121. p 96.2 L 7 9 od e g: l
122. p 96.2, L 7, L 9 code line (I*o. ,,.code line (I.C.

INTRODUCTION

A single programming language is described0 Though it has,

from the programmer's point of view, three forms, there is in reality

only one language anid only one processor for producing machine code*

in keeping with historical precedence the three forms as mentioned

are:

(i) An algebraic language

(ii) A synolic machine-like coding language

(iii) A symbol manipulation list processing language

(I
The algebraic language is ALGOL .ith some trivial extensions(2
The symbolic machine-like languge is like TASS

(3
The symbol-mnipulation language is like Threaded Lists

Nevertheless the three are described as one language using the same

syntax description; and there is only one processor°

The nmme given to the language is 2 0A(L, that of the processor

is 20AP,

The report that follows is divided into sections that:

Define the Language Synt.x of 2 0 AL (Part 1)

Define the Process Syntaw: of 20AP (Part II)

Define the Us* of 2GAL (Part III)

Naturally, a particular computer must be used as a model for (ii)

above; and some of the Process Syntax will be sinilarly machine dependent*
(5

The machirw used as a model--%thre so ecesaary--is the Bendix G 20

Effort has been made to keep such reference to a miniumo

Associated with the processor are modes of operation which, of course,

are machine dependento One such is described in Part III. The organization

2

of 20 AP is intended to permit flexible operating schemes, consequently

the design of the processor is described in terms of actions taken at

various phases tithe translation processo

The phases are directly replated to "peases" through the crxle sequepces

admitted to and generated by the system. Three passes are involved in the

description of the translation process:

i) Reduction from strihn representation to tree representation *o

ii) Reduction from tree represenatLion to machine code sequence
representationo

iii) Reduction of iischine code sequence representation to output

data representation.

With respect to each of the syntactic units of 2 0AL there is

associated a "time" of d l~jmiQD. and a "time" of , With each of

these there is a fjt, an - tte - , anIr. a .m a such

2 0 AP generates tables of relatios between properties of syntactic

units in the three representations Operations on these tables do not

constitute a pass in the sense Aboved, Instead they are imbedded in

t. phases between the passes°

The f.qoring diagram will be useful in describing processing tasks

on the various syntactic units:

Pass Declaration Call Trseition
.... irst intermediate terznal

2 _

3

Thus within the descfiptions that follow, the notation Di3 will

refer to an intermediate declaration processing during pass 3.

* Expressions are hamled-out of deference to storage efficiency-
in a 3 address block form, rather than a pure tree form.

3

Pet I. The Language: 20/\L

The form of the description that follows borrows heavily on the
(l

report of ALGOL 60o Indeed, since the ALGOL 60 language is so much

an integral part of the 20AL (+ , parts of the report are reproduced

almost in toto in the secfalo No further mention will be made within

those portions of their source°

A word should be said about reprouentationo The characters of the

alphabet are assimed to be distinct and individually recognizable, A

unique collection of characters underlined is assumed to be a uniqae

character of the alp1vbet.

What representation one may choose to use on restricted character

input devices is not the concern of this reporto

The p pose of the algorithmic language, 20A L is to describe

computational processesa The basic concepts used for the description

of calculating rules are

(i) 2'atonic" machi-ne Jistructions

(i) list instructionis containing ai constituents numbers,

symbols, variables,4 functione, and relationsa

(iii) the well-knoDm arithmetic expression containing as

constituants numbers, Vwriables, functions and relationso

From such basic units are compounded, by applying rules of xithmetic

composition, self-contained units of the language--explicit formalae--

called assignment statementso

To shoi the flw of computational p&ocesses, certain control

statewsLo ani statement clauses are added which mVy describe, eag.,

(+ The definition of ALGOL 60 was--in part--the responsibility of

the senior project membero

4

alternatives, or iterative repetitions of computing statements. Since

it is necessary for the function of these control statements that one

statement refer to another, statements may be provided with labels.

Sequences of statements may be combined into conpound statements by

insertion of statement brackets.

Statements are supported by declarations which are not themselves

computing instructions, but inform 2C)(P of the existence and of certain

properties of objects appearing in statements, such as the class of

nuirtbtrs taken on as values by a variabley the dimension of an array of

numbers, or even the set of rules defining a functiono Each declaration

is attached to and valid for one compound statement0 A compound statement

which includes declarations is called a blocko

A program is a self-contained compoumrx statement, iaoe, a compound

statement which is not contained within another compound statement and

which makee no use of other compound statements not contained within ita

In the oequel the syntax oxd semantics of the language will be giveno

(* Whenever the precision of arithmetic is stated as being in
general, not specified, or the outcome of a certain process is
said to be undefined, this is to be interpreted in the sense
that a program only fully defines a computational process if
the accompanying informU. on specifies the precision assuasd,
the kird of arithmtic asou-ted, and the course of action to be

taken in all such cases as may occur diring the execution of
the computation.

5

1,1. Formalism for Syntactic Description

(6
The syntax wAll be described with the aid of metalinguistic formulae.

Their interpretation is best explained by an example
<ab> :: [I (<z-b><d>

Sequences of characters enclosed in the brackets < > reresent metal-

inguistic variables whose values are sequences of symbols. The msrks : .u

and I (the latter with the meaning of or) are metalhiguistic connectiveso

Any vark in a formula, which is not a variable or a conmective, denotes

itself (or the class of marks which are similar to it). Juxtaposition ct

marks and/or variables in a formula signifies juxtaposition of the

sequences denotedo Thus the formula above gives a recursive rule for the

formation of values of the variable <ab>o It indicates that <ab> may

have the alue (or r or that given sone legitirmte value of <ab>.,

another may be formed by follaiing it with the character (or by following

it with some value of the variable <d%> If the values of <d> are the

decimal digits, some values of <ab> are:

(((

[86
In order to facilitate the study, the symbols used for d1stinguishing

the metalinguistic variables (ioe., the sequences of c Aracters appearing

within the brackets < > as ab in the above example) have been chosen

to be words descibing appr I ,rately the nat)re of the corresponding

variable, Where -ords "&hich hatfe appeared in this manner are used

elsewhere in the text they will refer to the corresponding syntactic

definition. In addition some formulae have been given in more than one

place, Definition: eMpty> : :-
(i~e . the null string of symbols)

6

2* Basic Symbols, Identifiers, Numbers, anid Strings.,

Basic Conceptso

The refereonce language is built up from the following basic symbols:

-<bwic symbol,'> s:- <letter> <deigit> I <l6gical, value> I delimiter>

<continuittion mark>

2ol. Letters

<aetter> -:- a bI dI gI - IjI 1111 1 172

A 113 IC IDIE IF IG IF, II IJ jK IL IMIN1IP IQl IR IS IT IJuIV11 Hx lYlZ
Thits Alphabet may arbitrarily be restricted,. or extended with any other

distinctive character (ioep aracter not coinciding with any digit,

logical value or delimiter),

Letters do riot have individial. meaniingv They are used for forming

identifiers and strings (ef. sections 2.4. Identifiers, 2o. Strings).

2o2.1o Digits

<octal digit> 0 11 1l2 131k, 516f17
<decimal digit> :~<botal digit> I's 19
Decimal digit -are ,zed for forrhig nwZber3, identifiere, and strings.

2.2.2a Logical V&Iues

<logical iralue> : :- true I fALse

The logical values have a fixed obvious -1roaninge

7

2o3o Delimiters

<delimiter> : :-. <operator> J separator> <Ibracket> j<declarator>j

<specificator>

<bperator>' ::- <Arithmetic operator> <relational operator> I
<logical operator> j<sequential operator> I <aist operator>

<arithmetic operator> :: Xj/ ft
<relational operator> <:: 51 e

<logical operatocr> : C I VJAJ-y' $

<list operator> ::- NP ~II M
<instruction operator bound> : :- I I +
<sequential operator> : :- go _to ii' ..thenjI else IfrId

<separator> :: 10 1:1 I :-Ij Lisey until Il ____comen

-<bracket> 11 1 j)J[g~ lend'~A i
<declarator> : own J lo.i n Jj~g et II.eiae real ~I arra

switch jprocedure Lrndex macro jparamter Iequivaent I jbraryX

<specificator> : stri~i ae au

Delimiters have a fixed mecaning whiich for the most pert is

obvious or else wiLi be given at the 4ppropriate place in the sequel,

Typographical featur-es such as blank space or change to a new line I-Ave

no significance in the reference language, They may, however, be used

freely for facilitating reading.

<continuation mark> : :- V
The continnation nark is used in the case of symbolic machine

code as a punched-card oriented coinvention specifying that the instruction

punched on the card requires (elt least) one more card to complete its

descriptiono

8

For the purpose of including text among the symbols of a program

the following "comment" conventions hold:

The sequence of basic symbols: is equivalent with

comment <any sequence not containing ;>

bi comment <any sequence not containing ;>;

end <any sequence not containing end or ; or .el-.>

By equivalence is here meant that any of the three symbols shown in

the right-hand column may, in any occurrence outside of strings, be

replaced by any sequence of symbols of the structure shown in the sam

line of the left-hand colmn without any effect on the action of the

progrsmo

2o5, Identifiers

2.4-.1 Syntax

<identifier> ::- <etter> I <identifier> 'kidentifier> j<digit>I
<special register identifier>

2-4,2. Examples

q

Soup

Vl7a

a34kTMs

MARLYN

2.4.3, Semantics

Identifiers have no irnierent meaning, but serve for the identification

of simple variables, arrays, labels, switches, and procedures, They mra

be chosen freely (cf., however, section 3o2.4. Standard Functions)*

However, the use of symbolic machine code is more easily mixed with

the algebraic end list language if certain machine registers are

9

recognized by identifiers fixed by conrvention* Thus# e0gov

<special register identifier> L::- ACC I MQ I 0A I U
The above is intended as an example and is clearly machine dependent*

The same identifier cannot be used to denote two different quantities

except w~hen these quantities have disjoint scopes as defined by the dsclara-

tions of the program (cfe section 2.-7. Quantities, KCinds and Scopes, and

section 5o Declarations)*

2.5., Numbers

2.5.1. Syntax

<digit> :*.- <decimal digit>

<unsigned integer> ::- <digit>k<unsigned integer> <digit>

<I~nteger> : :- <unsigned integer> 1 + <unsigned integer> I- <unsigned integer>

<decimal fraction> ::- c.<nigned integer>

<axponent part> : 0 <integer>.

<decimal number> :~<3unsigned integer> I<decimal fratction> Ij<unsigneid

integer><decimal fraction>

<unsigned nter> : t- <decimal number> j <exponent par-L>

<decimal number><axponant part>

<numbe-r> ::- <uns igned number> I ; <unsigned nwnber> I- <unsigned number>

<unsigned, octal integer> : :- <octal digit> I<unsigned octal integer> <octal
digit>

<bctal integer>::t- (8) <unsigned octal integer> J+-(8)<unsigned octal integer>

-<unsigned octal integer>

10

205c2o Examples

0 -200o084 _,03100 (8) 1234

177 0.074-108 -107 (8) 77777

.5384 90341010 10-4

+0-7300 210-4 +105

2-5-3- Semantics

Decimal numbers have their conventional meaning. The exponent pmrt

is a scale factor expressed as an integral power of 100 Octal rur:V3oro

(,re uzoe only with echine a.sse bly core.

2.5-4. Types

Integers are of type j.DZ All other numbers are of type ral (cf.

section 5.1. Type Declarations).

2.6. Strings

2.6.1. Syntax

<proper string> :*.- <Wn sequence of basic symbols not containing

or > k<empty>

<open string> ::- <proper srWn> I '<opn string>'
<open string> <open string>

<string> ::- '<open stringM

2.6.2. 1Mamples

'Skq.-[[[A ̂ /:'t"

I .. This *(is * a A I'string"

2.6,3. Semsntics

In order to enbe the language to handle arbitrary sequences of

basic symbols the string quotes tand? are introduced. The symbol * denotes

a space. It has no nigrificance outside strings,

Strings are used as actual parameters of procedures (of. sections 3,2. ,

Function Designators and 4.7 Procedure StatementS).

11

297o Quantities, Kinds and Scopes

The following kinds of quantities are distinguished: simple variables,

arrays, lists, labels, switches, macros, and procedures.

The scope of a quantity is the set of statements in which the declara-

tion for the identifier associated with that quantity is validp or, for

labels, the set of statements which may have the statement in which the label

occurs as their successor,

2M8. Values and Types

A value is an ordered set of numbers (special case: a single number),

an ordered set of logical values (special case: a single logical value),

an ordered set of strings (special case: a single string), or a label.

Certain of the syntactic units are said to possess valueso These

values will in general change d-urirg the execution of the program. The

values of expressions and their constituents are defined in section 3 The

value of an array identifier is the ordered set if values of the correspond-

ing array of subscripted variables (cf. section 3.!.4.1o)

The value of a list identifier is the ordered set of values of the

corresponding list, These values are ordered by the element sequencing

rule for lists (3-8...)

The various "type&' (j±g ., eq,.e basically denote

properties of v lueso The types associated with syntactic mits refer to

the values of these units0

2.9 Threaded Lists
(7

Threaded lists (Tlists) Ihve been reported on elsewhere o The

following points are, however, basic to the material of the report. An

information site is a place in the machine that can be occupied by i)

a symbol, ii) a Tlist, iii) an aftas speo~ifying the site of a symbol.

12'

Initially a Mat named NAME occupies two sites denoted by: NAME:

(,)@ One information site, denoted by ,) is available in each empty

That of the form (,)o

New blank sites may be added by an insert operation. Thus:

In a blank site, an empty Tlist may be inserted, Thus:

G,, list G, G))o

T T
In order to access information in a Tlist each list may be sequenced(8

at any thme in one of three ways : word, elemnto and listo Furthermore,

if X is the name of a particular Tlist, X specifies its site currently

under scan, X* specifies the "next" site to that currently under scan&

and makes 5t the current ones n(k,X) specifies the kth next site to that

currently under scan but does not chage the significance of X~o h(XO)

specifies the site of the innermost "(t of the pair " (" and ") "which

enclose X~o Similarly the kth head of Xg by u(k,4)- h X))...
k

The operators h and u are themselves independent of the sequencing

mode employed.

Word sequencing is a left--ight sequencing with exactly one stop at

each site* List sequencing iE a left-right sequencing with stops only at

sites which are on the same level, Element sequencing is a left-right

sequencing with stops only at sites where symboUs or indirect referents

may occur. An example will clarify:

Met: (,G)P ,(,GG ,))# , ,

word sequence: 1 2 34 5 6 7 8 9 10 11

list sequence: 1 2 3 4

element sequence: 1 2 3 4 5 6 7

13

Two lists my be combined in several ways to form new lists.

Copy (xpy) copies the list x into the list site y. Thus:

X y

gives for copy (Xy): (,(,(. o)), , Join (Z,x,y) forms Z: (xy).

Appndr (xy) forms, using the above example, (,(,), S,

The- .4 operation substitutes symbols and control characters into

sites from other siteu. It is a special copy working on the micro scale

of a siteo

3, Expressiors

In the language the prima corntituents of the programs describing

algorithmic processes are arithmetic, Boolean, and designational, expressionso

Constituents of these expressiors, except for certain delimiters, are

logical values, numbers, var 4 abies, function designators, and elementary

arithmetic, relational, logical, and seqaential, operatorso Since the

syntactic definition of both variables and function designators contains

expressions, the definition of expressions, and their constituents, is

necessarily recursive.

<expressionh> : :h <arithmetic expression> <Boolean expression> <logical

expression> <designational expression> <address expression>

3.lo Variables

3,i1.1 Syntax

<variable identifier> ::- <identifier>

<simpla variable> ::- <variable identifier>

<subscript expression> : :- <arithmetic eapression>

<subscript list> : := <subscript exlwession> I ubscript list>,

<sbscript expression>

<ar identifier> : :- <identifier>

14

<subscripted variable> : <array identifier> [<subscript list>]

<List variable> ::- <list identifier> C<List subscript list>]

<list identifier> : :- <identifier>

<list subscript list> ::- <fore list subscript expression>, <aft list

subscript expression>

<variable> : t- <simple variable> <subscripted variable> 1 <list variable>

3.1.2. Ezamples

epsilon R[S 9]

detA Xfp V10 *J

a17

Q[7,2)

x[sin(n x pi/2), Q13, n, 4])

3.1l3o Semantics

A variable is a designation given to a single value. This value may

be used in expressions for forming other values and may be changed at will

by mearo of assignment statements (section 4,2.)o The type of the value

of a particular variable is defined in the declaration for the variable

itself (cf. Oection 5l. Type Declarations) or for the corresponding array

identifier (cf. section 5.2. Array Declarations)c

3.1-4. Subscripts

3.1.4-o Subscripted variables desigate values which are components of

multidiuensional arrays (cf, section 5o2o Array Declarations)0 Each

arithm tic expression of the subscript list occupies one subscript position

of the subscripted variable, and is called a subscripts The complete list

of subscripts is enclosed in the subscript brackets C]. The array com-

ponent referred to by a subscripted variable is specified by the actual

numerical value of its subscripts (cfe section 3.3, Arith.etic Expressions)o

3,1.4.2o Each subscript position acts like a variable of type jggr and

the evaluation of the subscript is understood to be equivalent to an assign-

ment to this fictitious variable (cfe section 4o,2.4). The value of the

subscripted variable is defined only if the value of the subscript expres-

sion is within the subscript bounds of the array (of0 section 5o2o Array

Declarations)0

3.L.5. List Indices

3alo5.lo List variables designate components of listso Each list expres-

sion of the subscript list occupies one subscript position of the subscripted

list variable.. and is called a list subscripto The complete list of

subscripts is enclosed in the subscript brackets C ~The list compyonnt

referred to by a subscripted variable is specified by the action of the

list sequencing mode currently operative over the list namedo The value of

the subscript is defined only if the sequenciig action does not exhaust the

liat elementso Should oxh&zustion occur before the list component is

encountered,control tran~sfer within the program will occur.

3,2o Function Designators

3.2olG Syntax

<procedure identifier> ::- <identifier>

<actial parameter'> : :- <string> I<expressior> I<array identifier>

<s ;witch identifier> j<pz'ocedure identifier>

<letter string> * :a <letter> I<letter atring> <Letter>

<parn~te de~mite> : u ~ -letter string>:(

<actual parameter list> :: atilPara,-metPer>I

<;actual parameter list> <parameter delimiter>

<actual parameter>

16

<Actual pareneter part> ::- <empty> j(<actual parameter list>)

<function designator> ::- <procedure identifier>

<actual parameter part>

3,2o2o Examples

sin(a-b)

J(v~s,n)

R

S(s-5) Tamperature:(T) Pressure:(P)

Compile(6:-1)Stack: (Q)

3.2.3a Semantics

Function designators define sequencing rules, single numerical or

logical values, which result through the application of given sets of ales

defined by a procedure declaration(cf. section 5.4, Procedure Declarations)

to fixed sets of actual parameters. The rules governing specification of

actual parameters are given in section 1.7. Procedure Statements0 Not

every _rocedure declaration defines the va-ue of a function designatoro

3o2Q4. Standard functions

3.2.4-l. Standard Arithmetic Functions

Certain identifiers should be reserved for the standard functions

of analysis, ihich wilI be expressed as procedures. It is recoumended

that this reserved list should contain:

abs(E) for the modulus (absolute v&Lue) of the valtze of the expression E

vign(E) for the sign of the value of E(+l for E>O,O for E'=O, --1 for El< I

sqrt(E) for the equare root of the value of E

sin(E) for the sine of the value of E

cos(E) for the cosine of the value of E

a ctan(E) for the principal value of the arctangent of the value of E

17

ln(E) for the natural logarithm of the value of E

exp(E) for the exponential function of the value of E (es).

These functions are all understood to operate indifferently on arguments

both of type real and nteger. They will all yield values of type r ,

except for sign(E) which will have values of type I ggo In a particular

representation these functions may be available without explicit declara-

tions (cf, section 5o Declarations).

3,2,4o2o Standard List Procedures

next(v) for the extraction of the next list component from v without
advancing the sequence marker

list(v) for the insertion of an empty list into the site v

inort(k~v) for the insertion d k empty sites imnediately following v

def(wv) for the dynamic definition of a list w as v

copy(vw) for the creation of a list w which is, except for linking
addresses, identical to the list v

seq(e,v,w) for the sequencing Uhrough list v in mode e with exit to w
on completion

These functions operate on lists according to the formation and

8eqaencing rules regrding lists (cf. section 33)

3,2,5, Transfer Functions

It is understood that transfer functions between any pair of quantities

and expressions may be definedo Among the standard functions it is recom-

mended that there be one, mmely

entier(E)

which *'transfers" an expression of rja type to one of integer type, a!nd

assigns to it the value which is the largest integer rot greater than the

value of E

3.3, Arithmetic Expressions

18

3.3-1. Syntax

<adding operator> s:- +-

<bultiplying operator>--:. x /

<primary> ::- <unsigned number> <ariable> I
<function designator> I (<arithmetic expression>)

<factor> : :- <primary> <factor> TprI=7r>

<term> ::- <factor> I<term> <bultiplying operator> <factor>

<simple arithmetic expression> : :- <term>&

<adding operator> <term> j <simple arithmetic expression>

<adding operator> <term>

<if clause> ::- IS <oolean expression>k

<arithmetic expression> ::- <simple arithmetic expression>

<if clause> <simple arithmetic expression>g~ft

<arithmetic expression>

3°3.2° Examples

Primaries

7o39410-8

sum

w[i-'2,8J

coo (yZX3)

(a-3/y+VU TO)
z(V , #]

Factors:

omega

sum "Tos(y+z x 3)

7-394,o t,- 1[+2,8] T(&-3/+vu TO

19

Terms:

U

omega x sum tcos(r*s 4)/7-39410-a TWUi+2,8J T

Simple arithmetic expression:

U-Yu~omega X sui~cos (Yr~s x 3)/7*394j 0 -81'w[i.,eJ T

(a-3/y+vu)
Arithmetic expxessions:

V x u-Q(S+Cu) l2

q>O U=j S+3 x Q/A else 2 x S+3 x q

jacf &hw UV s~ It a x b>17 &b U/ ilii Ur

k7y then V/U else 0

a x sin(omaga x t)

0 .57,032 x a[N x (N-])/2, 0]

(A x arctan(y) * z) '(7.Q)

9- q ±4im n-i eSeu n

it a<fl &h A/B t2~j It b-uO Jb B/A daA(z x RCV ~i

33 o3o Semntics

An arithmetic expression is a tile for computing a numerical valueo

in case of simple arithmetic expressions this value is obtained by executing

the indicated arithmetic operations on the actual numerical values of the

primaries of the expression, as explained in detail in section 3o3o4 below.

The actual numerical value of a primary is obvious in the case of numbers0

For variables it is the current value (assigned last in the dynamic sense),

and for function designators it is the value arising from the computing.

rules defining the rpcedre (cfo section 54a Pz cedure Declarations)

when applied to the current values of the Mgggurg parameters given in the

expressions, Finally, for aritMetic expressions enclosed in parentheses

20

the value mst through a recursive analysis be expressed in terms of the

values of primaries of the other three kindso

In the more general arithmetic expressions, which include it~ clauses,

one out of several simple arithmetic expresions is selected on the basis

of the actual valus of the Boolean expressions (cf. section 3,4. Boolean

Expressions). This selection is made as follows: The Boolean expressions

of the JS clauses are evaluated one by one in sequence from left to right

until one having the value JM is found*. The value of the arithmetia

wrpression is then the value of the first arithmetic expression following

this Boolean (the largest arithmetic expression found in this position is

understood)o The construction:

gj <simple arithme tic expression>

is equivalent to the construction:

2ee it LMa MW~z <simple arithmetic expression>

3.3.4. Operators and Types

Apart from the Boolean expressions of if clauses, the constituentis

of simple arithmetic expressions must be of types rMJ. or Int&a (cf,,

section 5.1. Type Declarations).

List variables occurring in simple arithmetic extpreeions must of

course, refer to that part of their information content which is; of type

roal or ingorg. The meaning of the basic operators andI the type* of the

expressions to which they lead are given by the following rules:

3,3,4.1, The operators , and X have the conventional meaning (addition,~

* subtraction# and multiplication). The type of the expression, vill be

* jj~IDngor if both of the operands are of U&iSEWt type, otherwise

3.,3,4,2, The operations '<terzn>/<factor> and <teM'> 1. <factor> both denotes

division, to be understood as a imiltiplication of the term by the reciproce.l

21

of the factor with due regard to the rules of precedence (of. section 3.3.5)o

Thus for example

a/b x 7/(P-q) x v/s

((((a x (b-')) x 7) X ((p-q)-)) x v) x (-1)

The operator / is defined for all four combinations of types rel and

and Ij~s and will yield results of real type in any case. The operator

is defined only for two operands both of type 2j4nte and will yield a

result of type intg A defined as follows:

a 1 b - sign (a/b) x entier(abs(a/b))

(of. sections 3.2.4 and 3.2.5).

33.4343. The operation <factor> j<pdmwr> denotes exponentiation,

where the factor is the base and the primry is the exponent. Thus# for

example"

2f"4 mans (2fl)k

while

2t(nfn) means 2(n)

Writing i for a number of jng e type, r for a nmber of rjal type,

and a for a number of either. IAS or r type, the result is given

by the following rules:

ati If iDO, a x a x...x a (i time.), of the same type as a.

If i.., if &K, 1, of the sam typeas a.

if a-O, undefined.

If i<D, if &/O, 1/(a x a x.,.x a) (the denominator has

i factors), of type M .

V. a-Op undefined.

2

a'rr If 0)O, exp(r x In(&)), of type rm,,

if &.0, if r>0, 0;. 0, of type z~a

if r~gD, umdefined.

If .aO, alwas undefined,

3.43.5. Preced1ence of operators

The equence of operations within'one expression is generally from

left to right, ith the following idditibrnal rules:

3.3.5.1. According to the syntax given in section 3.3.1 the following

rules of precedence holds

first t

second: z/I

third:s+

3.3-5.2. The exprssion betweet a left parenthesis and the mtiching ri)t

parenthesis is evaluated by itself and this valve in used in subsequent

calculations. consequently the desired order of execution of operations

writhin an exprssion1 can always be arrangd by appropriate poitoning

of parentheses*

Me&.6 Arithmetics of rol] quiantities

Nuwbers 4z: vw~iables of type rua. mst be interpreted in the sense

of ni=Wioal analysis, i~e., as entities defined inherently with only S,

finite accurac. Similar:ly, the possibility of the occurrsO Of a finite

d.iition from the m.thtically defined result in azW arithmetic expression

im expliitly understood. No exact arithmetic will be speified,- however,

and it in indeed understood that different hardware representations mAy

evaluate arithmetic expressions differently. The control of the possiblo

consequercee5 of such differenc~es must be carried out by the methods Of

nurMrical analysis. This control mist be considered a Part Of the process

to be described, and ill therefore be expressed in term of the langmag

itself."

23

304. Boolean Epressions

3.4.1. syntax

<relational. operator> :-< ~ jm >1
<relation> :r- 4arithiutic expression> <relational operator>

4arithmetic expression> Ij<ogical. expression> <relational operator>

<logical, expression>

<Boolean primary> s t- <logical vaue> I<variabe>I

<function designator> j <eltion> I (<Booleani expression>)

<3ooloea secondary> s :- <Zoolemn primary> I -I<Boolson prialry>

<Boolean factor> t :' <Booleani secondary:>j

<Boolean factor> A -<Boolean secondary>

<300lean term> I I - <Boolea fa.cr> I <Boolemn term>

V <Boolean factor>

<implication> : t- <Booloar term I <implication) =<Boolean term>

<simple Booleanr) : s- <implicatioe,

<simple Boea32)-Ktmpicatior>

<Boolean expression> &:- <simple Boolean>

-af clUse> <simple Booleana> gka <Boolean expression>

3.4*. Exampilos

z- -2

I>VVz <q

a 5b> - 5As-d > qj

PAqVx/y

±U IL ifa 2Mb SIM c Lhoza d n2&A f Ugbm g SIM
h'lc

24

3e43. Semntics

A Boolean expession is a rule for canputing a logical value.

The principles of evaluation are entirely analoous to those given for

arithmetic expressions in section 3.3.3.

3.4. TYpes

Variables and fmnction designators entered aw Boolean primaries

must be declared P (of. section 5.1. Type Declarations and sections

5..4o Values of Function Designators).

3.4o5o The Operators

Relatiosm take on the value &Mu wienever the corresponding relation

is satisfied for the expressions involved, otherwise false

The meaning of the logical operators , (not), A (and), V (or),

(implies), and = (equivalent), is given by the folowing function

tableo

bl fa h lp &M &

b2 Uilm zI= L"I &OK

-1 bl &M &Ml but"11
blAb2 tSIii Lai Mitre m

blob2 u l kia Jm~t
bL]- b2 Lia zit

25

3.5. rogical Expression.

355.1. Syntax

<simple logical operator> :t- V IAI-11$
<Logical priaszy> a :- <octa integer> I<nteger> <wariable>j

<function designator> k4Boolan expression> (<Logical expression>)

<shift uuas> it -Qx-aitimtic expression>

<Logical secondar7> :s- <Logical primar-y> j-<ogical primary>

<Logical factor> ::- -a<ogical secondary> I <Logical factor>j$ <shift measure> I
-aogical termn> ::- 4aogical factor> I <ogica term> A <Logica gaotor>

<bajor> mw a. gical term> <.*Sjor> V<logical term>

<Logical expresion> :zt- 4:bjor> I<if clauee> *Uijor> nina <logical

expresion>

365w2. Examples

X $ (I J-4)

(I A) $K

UL 1 $ 2iY Mm~ Z else K) $ 3

M3o3 Semantic3

A logical expr'ession is a rule for computing the value of a fixed

length string of binary digits,, The principles of evaluation are entireVj

analogous to those given for arithmetic exresion. in section 3.3.3.

Variables and function designators entered as logical primaries

=ast be declared J.ij. (of., section 5.1. Type Declarations and sec-tions

5.4.4., Values of Function Designators),

3.5.5. The Operators

'ne operator $ refers to a (non-cyclic) shift of the binary pattern.

Thus inA'l1 $.12, the logical variable .i3. isifte 1.121 (md d) place.

26

left (right) if 12 has a positive (negative) value. 4 is a function of

the register sine of a camputer and wills of course, VaW7 among conputers.

A31 other operators are as described in sections 3.4.5o and 3.3.4p

3,5.6, Precedence of operators

The sequence of operations within one expression is generally from

left to right, with the following additional riles:

3.5 6. . According to the syntax given in section 3*4,., 3.5.1# the

follwing rules o' precedence hold:

first-, arithmetic expressions according to section 3.305.

second: < <

third: -1

fourth: $

fifths, A

sixth: V

seventh:

eighths

3.1.6.2o The use of parentheses will be interpreted in the sense given

in section 30 3.5.2q

3.6* Designational, Mquesions

3.6.1. Syntax

Label> :- <Identifier> I<unsignsd integr>

<switch identifier> ts- <identifier>

<switch desigMtor> : - <WtdtCh identifier> [<subsoz.pt expression>]

<simple designational ev dion> :se- <Label> I <switch designator>

(<desigaational caqmreesio>)

continued-

.27

"Aesisnational expresion> s t. <uimiple 4lesignational expressio j
4*9 clause> <simple designational wop~eseioft> M

<Aesignational smpesion>

3.6.2. Exonpme

17

p9

Choosef n-i]

TownU. y<D &bWz N gja N#1

I-L Ab<C US 17 SURs q1=t W.< tj 2 sqaa ni

3.6.3. Semnxtics

A desigrational seesion is a rule for obtaining a label of a state-

ment (of- section 4. Statemena). Again the Principle vf the evaluation

is entfral4y analogous to that of arithmetic ezpressionp (Lection 3.3.3).

In the general C""t the Boolean exPressions of the if~ clauste will select

a simple designational expressiono If this is a label the de&.red result

is already foundo A Ogy1h designator refers to the ccrresVond..cg wIkbc
declaration (cfe section 5*3,, Switch Declarations) a&d by the actuk1

nurbric*l valus of its subscript expression selects one of the desi&,ational

expressions listed in the ed-tob declaration by countirq -these from lei%,

to right, Since th, designationil expresion thus selete~d may &Bin be

a switch designator this evaluation is obviously a recw:-sive process.

* 3.6.4o The subscriyt exprscion

Ttm evaluation o)f the subscript exresion is anklogouI to that Of

* subscripted variablfos (cf. section 3.1.4.2)o The value of a switch

designator is definejd only if the subscript expvession usctirs on of the

positive values lo 2P 3P ... , n. where n is the nauabtr of entries In

the switch list.

28

3.7 Address up'essions

3.-7-1 Syntax

<eAddress wapression> : <ndiec> <iet

<Indirect> ; :- <Indifrect address expression> j(<indirect address

expresigiom> <sign> <indirect address expression>), (<indireCt>)

<direct> :I~- <urmignsd address integer> I<indixrtct>

,<Indirect addresis expression> : :- <simple address expression>1

(<indirect address expression>)

<Aimple address expression> t:- <elementary address>I <elmentarv ad&d-ess>

<sign> elementary address> <elementary address>

<sign> <unsigned address integer>

<elementary. address> ::- <identifier>

<uinsigned address integer> t:a- <An unsigned integer :5 32,9767>

3.7.2. Examples,

L 26

I!-: (8)23

-4 c- 46 - DT4

-4:_1 +E4

-4 K6 + (Z 1 11))

',ALM +. (MU) (TAU))

3.7.3. Semantics

Address xreusiore are used to 3pecify the value of operanfs of the

symbolic macbine-Lkie code. Their syntax is defined to wake maxial is0

of the operand gentrating facilities of a particular computer. In partix.ular,,

in address Ope5 sa.O3 D the ONLwr&cters "("rd""braekxmtng an identifier

29

refer to the contents of the stora" location which will correspond to

that identifier. Nested parentheses provide levels of indirect addressing*

indicates that identifiers not enclosed in parentheses have individually

implied parentheses about them. -4 indicates that the value of the address
the diorect

expression is/operand The value of the address expression will in general

be defined modulo (Qf) where I wil depend on the adc ressible stwage

capacity of the ec uter.

37.4-. Precedence of operators

The sequence of operations within an address exprt asion is generally

from left to righto Insofar as sequencing of operations is concerned, the

use of parentheses will be interpreted in the sense given in section 33.5.2.

3.8 List Subscrip, expressions

3.8.1. Syntax

<address chatz > : to v j ,iIVAdreSS chn> <&1M1 chain>

<function designt r> I <empty>

<forelist subtcript expression> :t- p <address c .in> p <address chain>

<aftlist seqmtnce chain head> s t- k*Hfl.-metion C as.4gmtor>I

<aftlist sequnce chain> x t- <&ftliat oequne. cl Un hev> Ieatlist

sequence chain head> <4ftlist st juence chain>

<aftliat substzipt expreasioO $t- <Iiftlist aft snce chain>

3.f8.2. xo asu (as suanr Apt.)

, Ep n(v 14 *S,t)~e~~

3.8.3- Semantics

The list subbcript expressions are used to select list components.

p Isolates the licit componnt prefix, 11(4) the left (right) portion of

the list componentc g refers to the current position of the sequence

counter on the list in question; * refers to the next as defined by the

sequencing rule nt oked on the list. aters the seq zence counter before

extraction of the Ustt component.

3.844 Precedence of operators

fand 14 ore associative to the right, i.e.,

means /of /of),of X.

4. Statements

The =nits of operation within the language are called state-

ments., They will r~orinally be executed consecxtively as written. However,

this sequence of op grations, r. be broken by control sttgtemsntt, i~e., # 2f

gtatenmatsg which cof in. their successor explicitly; shortened by conditional

statements, which z ay cause certain~ sitamts to be sk:Lpped; tin expandied

by far statements -vhich ca ..- certain statemcnts to be :'epeateda

In order to = ke it possible to define a~ specific tynamic succession,

statementsa may be I rovided with labels .

Since sequencesa of statements my be grouped toget~aer into compmamt

statemennts and bloi ks the definition of statcuient must iecasariy be

recursive.* Also u~.meo dealaraitiow, desca'ibWd in sectiin 5, eaiter fundament-

ally into the synt# otia structure, the syntactic definition of statements

must suppose deola!ations to be already definead.

31

4.1. Compound Statemnts and Blocks

4.1.1- Syntax

<unlabelled bIeaic statement> ts- <assignment statement> I
<go, to stuet <d=W stAteMent> k-quocedwe statemsnt~fbode line>

4basic statew~nt> us;- <vnlabelled basic stwae nt> <abei>s

<bAsic st1 tezmnt>

'zbxnconditiona3 statement> t :- -Obasic statement> I<ror statement>

<4Ocapoun statement> kblock>

-<statement> it- Oaconditional statement>

<corAitiorial statement>

<compound tail> u:- <statement> 04 <Statement>5

<compound tail>

<block head> : z- bggIA -9clar'atica> -<block bead>;

<d4ec&re,,i)12>

<unlabelled oo upou> t2 bgla~ <cUzowq~d tail>

<unlabelled bliick> ::- <eblock head> ; <compound tail>

<bompound stat mwont> 8:- <unlaibeled compound>

<Label>s<c ipound statement>

<Ilock> t;- <AW'Abelled block> <Ilab.1>:<block>

This syntax =W~ be UXLustrated as follws: Denoting ai4trazry statementes

,declaratiorm, and libols, by the letters Sp Dj, and L, r-_spsctive2y', the

basic syntactic iuui- a tale the frmes

Compound statement:i

L: L:.se,.b d.AS ; S ; 0..S ; Sgd

Blockt

it should be kept i ztdnd that each of the statements S my again be a

complete compound s,atment or block.

32

Basie atatemntus

a I- l4.q

a- ta Naples

START: CONTINE: W:- 7.993

r: b: CIA X+(B)%'

Compounl staownt:
boi :- 0 ; "tr y t- &2 1~ Wj . iq. x zo- A[y]

JE x thn z2 t STOP 2U1 jL x>w-2 n=, AM t S

Aw: St: W:- x+bob MAd

Block:

Q ba j 8W i, k ; jMl w

fpr. zi g&2 m d2

Ik-,A.nI w :- Aillk

A[i,k] "- A[k,i] ;

A(ki] "- w eMA for i ai k

gen bl.ck Q

4.1-3. Semanticn.

Every block ;.utomatically introduces a new level of nomenclature.

This is realised &° follows: Amy identifiei occurringt vthin the block

may through a sui. able declaration (cf, se-tion 5. Declarations) be

. . specified to be !,.cal to the block in question. This mrnins (a) that

the entity repres ntod by this identifier iwide the bl,'k has no

exiotence outside it, and (b) that any entity representr by thie identifier

outside the block is. completely inaccessiblo inside the block.

33

Identifiers (except those representing labels) occurring 'within a

* block azud not being declared to this block will be nonlocal to its ie,q

will represent the ame entity inside the block and in V~ie level immedia-

tely outside it. The exeeption to this rule is present. I by labels, 'which

ame local to the l3ock in which they occur*

Since a stat =ant of a block may again itself be a ')lock the concepts

local and nonloca. to a block must be understood recursi rely. Thus an

identifier, which is nonlocal to a block A, may or my rnt be nonlocal to

the block B in wh .ch A is one statement0

4o2o Assignment Statements

4.2.1. Synltax

<Left part> : :- <'variable> :

4aeft part list> .:- <tt part> Ij<left part list> <Left part>

<Casaigmnent statewient> : :- <Left. part liait> <arithmetic expression>

<Left part I -.st> <Boolean expression>

4o2.2. Exmple~s

n :b, n 1

A :- B/C v - q x S

rs Y, Ico21 :- 3 - arotan(s x zseta)

v :,- Q > iA z

4.2.3c Semanticsi

- .Assignmient a., atements serve for assignIng the valuiw. of an expression

* to one or several. viriables. The process wi111 in the gcimwal case be

understood to tak~ place in three steps as ,!ollows:

4.2.3.1. Azny sub, oilpt e2Wressions occurrIng in the h:~t part variables

are evalinted in esquence from left to righ{t.

34

4.2.3.2. The expression of the statement is evaluated.

4.2.3,3. The value of the expression in assigned to all the left part

variables, with any subscript expressions having values as evaluated in

step 4e.2.3.1

4.2.4. 1'pes

All variabl s of a left part list must be of the msime declared type.

If the variables are Boolean, the expression must like ise be Boolean. If

the variables art of type rjg or Jajgal, the expression must be arithmetic,

If the type of ti arithmetic expression d:iffers from that of the variables.

appropriate transfer functions am understood to be automatically invoked0

For transfer fro re to Liegz. type, the transfer function is understood

to yield a result equivalent to

t.ntier(z 0.5)

where E is the vtilre of the expression.

4.3- GO 70 S atements

4.301. Syntax

<so to stat rmnt> :- u a <designational exprEbsion >

432. Examples

e xit [n+li

t&it Ab< c tj 17 S U q[if v-- QW 2 M n]

4.3.3, Semantic

A Ig s sta ,oeet interrupts the norzal sequenco of oporations,

defined by the if -ite-Wp of statments, by defining ito succossor explicitly

by the value of I desinaional exesior. Thue tho next atatement to

35

be executed will be the one having this value as its label.

4.,3.4. Restriction

Since labe!A are inherently local, no Mg I& statement can lead from

outside into a b, ock.

4*3o5o 00 TO an uz4.1'ined switch designator

A g kg sta- ant is equivalent to a duyW stataemnt if the designa-

tional expressi is a switch designator Viose value is unde fined.

4o4o Dwwm Statt mits

4.4810 Syntax

<duni stat(-etnt> : :- <empty>

4.4.2* Mxanple.3

balu Goo John: gxd

4.4-. Semantic

A diuyW sta amont executes no operati rno It ii ai me to place

a label..

4.5. Coniiition*. Statomets

4.5-1. Syntax

<if clause> :b-- it <Booleaen exresai.n> Ma

-caonitio Al statement> t :- <basic statesnt> <for rtatmsnt>1

<comp idx statfaent> j <b:lock>

<conditione atatemnrt> :. P- <if statement> I <if state3Kint> SUM

LVsI tb 40 Prta a I R

a<\/PQtj4p AA kj~ = q~ ~ta a :~v/,v

Il y :- 2 x a e i

1~ It v>- tkma a to- eq 11Mj if v>9-1

Coviia etsateienit tAuime metain statewnts to bme wtcue o

t~ztppei depmrdlmxg cn the raminxg wYIies of spcified Boolean expesians

4..5.3.1 a Itatem-t., The unconditional etatoment of an if wz~atsmtmt

willJ be tmeoutcA it tho Boolean ae2sresion of the it clause its t:7

Mtertries it w,111 be skpped and the operation will be continumd with

the wt zitt. nt,,

4,5,.Z Conditioma1 9tatconto According to the syntax two differ-sit

fonro Pt ontional oateuts are poeIiblo. These Wa~ be ilhiwitraUod

;U lW, Ig-&1 2laS IIS ; S4

Lt IS.2"I 2 VU5 lt tD mS ; 34

Hlere BY,. to B3 "ws Boolean "~Pr.ionso while Si to 33 are uncoieit1.onul

s.tatownnts. $4 in tho Statmmnt following the ca*Upte coaditicml.

ttatsm~t

Th-w wvoution of a comdtioni tatewnnt uiw be described a's fcflb:

The Bo, lean. m.V~raion of the V. clause* we' wmv~ated one after the other

in seuencme fim left to right izntif orm yielding the 'rall-S tolu is found.

7hoin thi unconditional otatuuct followittg this Boolemn is 0=0ut ad0

Unles thin statesnt defines its succeenor explicitlY the nw~t stat4m~eult

37

to be executed wili be S4, ie., the statemot following the complete

condlitional statenento T the effect of the deliiter *n = y be

described b7 saying that it defines the successor of the statment if

follows to be the statemnt following the complete oeoitional statement.

The construction

SIM <mconditional statement>

is equivalent to

MIA& It t"I 2h <unconditional statment>

If none of the Booleen expresions of the IL clauses is true, the

effect of the whole conditional stateant will be equivalent to that of a

d=a statement.

For further mplanAtion the following picture ma be useful:

BiUmS t B2n S.t 4
AB m s l£2aaA2 aaS3 ; s4

B1 false B2 fas

4o5o0 gO 0 irbo a conditional statement

The effect c C a a t& statment leading into a corditional statent

follows directly from the above ea tler of the ef 'ect of eao

4.6.. Em stat ints

4.6.l. Syntax

for list e.ement> t- e thmti axpression>1

S<arithmitic expression> aj <aritbmstic ewqressior> go

<rithmtic expression> I <Arithmetic expresrion> thA

<Doole3a a p ssiom>

<fi list> it- <for list elemnt> I<fwr liet>, <for lot elmmnt>

38

<Oor clause> ts- Am <variable> :- <for list> ik

<for statement> :,:- <for WA 6> <sxttawiat

Iab&e><for s8tatment>

4.6.2. E==3es

hr q t- 1 M s Mg=t n al A[q] t- B[q]

ht k a,,- L, V1 2x t 1 Vb VN41 do

A[k,j] :- B[koj

4.6.30 Senmntico

A fr clause causes the statement S which it precedes to be repeatedly

executed zero or more timS. In addition it perform a sequenoe of assin-

ments to its controlled variable. The process may be visualized by =am

of the follwing pieture:

Initiallse I test S statement &B i adv xace sucoessor

for list exhausted

In this picture t.ie word initAaiso maeun 1 perform th first assi et

of the fr claust - Advance mum: perform the next a isigmne t of the ft

€lausoo Test dot manos if the last assigmnt has bmn don,# If sop,

the execution cor ,Uniss with the successor of the ftj statomt. If not,

the statemmnt fo l oxwLg the fa clase is twmeoutd

4,6-4o The Dr. lit elements

The fr li . givese a rule for obtainlas the valu, s which are

39

consecutively assigned to the controlled variableo This sequence of

values is obtained from the f:= list elements by taki those on. by one

in the order in which the7 are writteno The sequme of values gmnarated

by each of the three species of fat list elements and the coreponding

esocution of the tatemsnt S ar given by the follwing rules:

4,6o-4-l Arithfe-4c C pressiono This element gives re to one value,

namely the value -)f the given arithmetic expwression as calculated Simedia-

tely before the corresponding execution of the stateumt So

4.6-4.2. Step-wz'rl-element. A hr element of the foru A LA B VdJ C,

are aritmtic expzressione, gives rise to an execution iddch my be

descrlbed most conisely in term of additional 20A L statemente as

follows:

V 8- A 3

LI L(V--C) x jign(Ek>O Un in I& Element exhuamteds

Statamvnn S I

V S- V+B ;

where V is the co: itrolled var ible of the qr clause nA4 Elwant exhausted

points to the ova Luation according to the next elamn in the AM list,

or if the step-an .I-el nt In the last of the list, to the next statement

in the progam.

4.6-4.3- WhJka-- ulmento The emecution governed bY a 4list elemnt of

the form E wile ?, where E is an arithmetic and F a Isolean expesion,

is maet concisely described in term of additional ALOOL statements as

followes:

40

13 VS-E 3

P 2 A t FMamiMemt aumted

Statment S

mI U

where the notation is the sam as in 4.6.2 above,

4.6o. The valx a of the controlled variable upon aLt.

Upon exit out of the statement S (supposed to bes compound) tbroj&

a jS t& statee h the value of the controlled variable will be the sam

as it was dl407l preceding the execution of the SU t& *satewent.

If the ewdt is due to exhaustion of the frM list, on the other hands

the value of the controlled variable is undefined after the anit.

4.6.6o i t& leading into a at~ statment

The effect of a in I& statement, outside a fta sitowtp Is madefined,

4.7. Procedure 'ftatumnte

407.1. syntax

<zctval par meter> a a- <Istring> I <axpression> I Irs :-etfiei'>

<list Id mtifisr> Ij<swith identifier> I 1roctodurs f4tfir

<etter str LA> t:- <isttor>j4ietter string> <letter>

<Paramter Isijuitsr> t:- a <etter strirg>: (

<actual par mter list> z:- <hctual parameter> I
(actual, amomter litt> q<pater delimitw>l

<Actual mwzr4ter>

<Actual par mo~tor part> s s- <iuiptq>)

(<actual parameter list>)

<procedure Atement> S:o <prooed'ze identiir>

<actual ,arauster pmat>

41

Spur (A) Orders (7)esult tot MI

Transpose (Wvel)

Aban (A#N.MYyz#x)

'1nsrjroduct(A~tvPjia] *D(P] PlO*PvY)

These examples ci rrespiozd to mqaes given In uecticu 42

4.7.3. Semantict

A wgmz statement serves to invoke (canl for) h1e execution, of

& procedure body (of. section 5.4. Procedure Deocuratiwwi), mwhre the

proedure body in a statement written in 20AL the effec,,t of this emu-

tion will be eailvalmmt to the effect of performing the following operations

on the program:

447.3.1. Value issipueuit (call. by value)

All formal 1 aameters quoted in the value part c f the Irmuedwe

declaration heati ng are assigned the values (cf,, section 2.8. Values and

Types) of the co responding actual parameters, these vi~ iwnts being

considered as be: ng performed explicitl.y before enteri n, the procedure

body. These fan al paraeters will sbeen2ybe troz Utd as local to

the procedure bot y.

4.7.32, Names rpcaent (call by nae)

Arty formal Iair mter not 9:wted In the value lict .-,A replaced,

throughiout the p ocedure body, by thie corresponding &ztLal parameter,

after enclosing I his latter in parentbese wherevr &7tactioa11y possible.

Possible couflic-i s between identifiers iserted troi1 this process and

other identifiert already present within the procedure body til be

avoided by suital les qstamtio changes of the tonal or local ideatifice

involved.

4.2

4-.-33. Body o and eeution

Final the procedure body odiied as above, in inmerted in place

of the procedure statemmt mod executed.

4.7.o Actualfonal correspondence

The orrespondence between the actual pareaeter of the, procedure

etatement and the formal parameters of the procedure headin; is estab-

lished as follows: The actual parameter list of the procedure statement

must have the same number of entries as the formal parameter list of

the =gjd declaration heading. The correspondence in obtained by

taking the entries of these two lists in the sam order,

4.7.5o Restrictions

For a procedure statement to be defined it is evidently necessary

that the operations on the procedure body defined in sectiors 4.7o301 and

4*7032o lead to a correct 2oAL statement.

This imposes the restriction on azy procedure statement that the kind

and type of each actual parameter be compatible with the kdid and type

of the corresponding formal parameters Some important particular cases

of this general aule are the followings

4o7o5.1. Stringi cannot occur as actual parameters in proc(dure state-

ments calling r. j declarations having 20AL 60 statemute as their

bodies (cof. sealon 4.7o8).

47.5.2e A fonidl parameter which occurs as a left part va-iable in an

asigrmnt statenmnt within the procedure body and wIrlah is not called

by value can only correspond to an actual parameter iddch in a variable

(special case of expression].

4.7.8& Procedure body expressed in code

The restrictions imposed on a procedure statement calling a procedure

having its body expressed in non-ALOOL code evidently can only be derived

from the characteriatics of the code used and the intent of the user and

thus fall outside the scope of the reference languape0

4-8- Code Line

4,8.1. Syntax

<code lines> ::- <line of code>4

-:line of code> : :- <instruction desigator> I -*cro designhtor> j npt>

<instruction d63igftor> t :- <operation designator> <address eopreesion>

<operation designtor> :t- <Wm of the operation imnauonics of the
computer sachine code>

<hacro designator> t: - <macro identifier> <actual paramwter part>

4.8.2. Examples

CLA -*, X + 44

STY (xe+ (B))4

GRP(ZO ((A 9) -(h3) 7

4.8o3o Semantics

The code line 1-3 the unit statement in machine-like symbolic code.

In the awe of m~acro desigziatorst the parenthesis cowrentions of the

actual paramoters must natch the requirnments of the farmi parameters

in the oorreeponding macro declaration

4.9o Macro Statnmnts

44

4.9.9. Syntax

<actu~al elementary macro parameter> :so <tring not contanining parentheses
<aLOOOmOpO> or g

<actual macro paraawter> t,.- <aemepo> I (<Aemepel.>)

-<actual macro-paranmter list> :t- <aemopo> j<Sc~ftpel.> *<SeMope>

<actual macro parameter part> it- <empty> I(<aL.m~pel.>)

<ancro statement> t t- -acro identifier> I <actual macro parameter part>

4.9.2. Exomplee

Inmerproduct (ACt., Ps u.X B[PJ, 10& P, Y)

Axong (HRAT) $ 1,V,C)

4.9-3. Semantcs

A macro designator spe cities that the folloving sequence of

eventsa opres

(1) In a co~py of the macro declaration crepnigto the

mcro designatorp th~e oet of characters specifying an actual paramter

are substituted for their corresponding floinl parmnters in all place

of the latter's occiurrene in the macro decbaration. Then

(ii) The altered (copy of the) ec arain repiacee the iamr

statimmnt which called it and then

(iii) Processing continues at th. code position previously

occuied by the manr statmmnto

45

5, Dec-Urations

D e~at ions serve to define certain pr'operties of the Iiiertifiere

of 'he~ r nfam, A declarstior, for an identifier is vali for one block.

Ov -,ide Via block the particul2ar Identifier my be used for other

flyzmrV.caly this izuplJsa the following: at the time of an entry

in o z, ' xtk (through the bSj~ 93nce the Libels inside are local arnd

~h~ito~iiaccessible from ovioide) all identifiers declared for the

bi ,)ck & tma the Weitiicance implied by the nature of the declarations

gi tefno f~ these idm~nifiere had already been defined by other declarations

ozlide theay Pr for the tim being given a new sismificance. Idntifiers

ivxe~h ax'. not declaved for the block,, on the other hand, retain their old

me -Zinng

At. tho time cr an exit from a block(tluvugh SaM or by a go to

eitnt)t ,al ideal- flers which are declared for the block lose their

sit1&x~oagaitnc

A dvearation may be marked with the adiditional declarator M'ao

Th:.t. ha tbo folloiLng effect: upon a reentry into the block 9 the values

of .. quaneti in~~ be unchanged from their values at the last exit,

wha the, vaaxws of declared variables which are not marked s gMa are

mr.,efirmdo Apart f:,om labels and formal partaneters of procedure declara-

ti#.m and with 'the -Amaible exception of thous for standard funct-lorm (of,

sek.tiow 3o2A and 3.2*5), all idaiir of" a program mit be declarede

* No id*ntifi*r n%7 bi declared me than once In azW ame block beado

* <de& clamU*-,>:: <Lnn~ deciswa;U onX> I<array declaration> ~I titch

(z~I,,raiar> . proce~dure dclaratiori> I a1mro decbration>

deelaratiov> J<eqivalezwe doclaratioh>j

5.1 Iyp Dacera~m .11k11dL2~l

r-4a:1 Or om tPpe~> 32-s <type> m<ye

<typ d amtioa> <L~ol or own tyt~ <typ lIst>

OMA2aa Ac.~y19n

Tfpideckitrat.own uazvva -to declare cert~dxi identitiers to, repremont

oki-.p1*) varlables of a given type, J0 dee1tred variaes may onLyr assume

ri~t..VO (1,V negatiy v wllli iniciling zero,, IMtnC dtolared varf.abWau

mk- oiily aa~sue pom Live and negative into3grI1 values including zero,

am:. bo repme~ented :Ln either deciml or octal forme Bflj2aa ceciarsec

vaw4ables wq only ass the waues 101 am', L" kg~ge4 deered

vavisble6 wne binar r strings., U~ declareod variableam ae .qty :Lsts

oonainngcm infimtion *its* Indox d*plared varieblesgare index rftisteug.

In aritmtic Ohwsmi~ a dtpinim miicb eam be oaoiW br a

So&~ 4.oUred imudab. mW be o.d bw on InI dedo i vwdabbe

Fmi the mommUn at u, me Um ewth pat~ of seeti. 5 abve

47

5., Arrty Deciarakioyvs

5.t-.ole S~rntax

-U~v. boin-A> t :- <jLrithmtic expression>

<uer. bonrgt> :t:- <tritbmetic expression~>

-I~uZK ptir> : t- <Lo1w bound>-tupper bound')

-' cun pair 1.1t> :: -<bound pair> I -bound pair list>, <bound pair>

<A:rkv vir ;Ment> ti-' <Arrayv identifier> (<cbot~nd pair list>]

<v~sy idsatiffter>,-, <array spyent>

<wvray 2_.t ::! a .~ s a'agw3ent> I<Array list>, eary segment>

<&av-ray dYaliratiozi:> t :- S <Array list> 14locl or own type>

f~~<Array iLfit>

2Mn "&I= & A(;U o4D fA 2 Mg U:203

AnL 1=,B de Liration declares ame or stmveal identifiers to represent

v. 1iiaizional az' -Wy of subscripteod variables and given the dimensionls

of thb iiaa the 14ounds of ths subscripts aind the types of the variah~sa

5~~o~loS439cript bounde. The subscript bracket foflowing the identi-

fie~r of -UiIA; array An the fern of a I b, pair isto Uec item of this

liAt girae the low and upper bound at a subscript, in -the form of two

aritmutit, eatprssi')ns separated by the de1iziitert The bound pair list

gives the bounds of a3.l subscripts taloen In order from left to right.

5.2.34 M Dinso The dimnuuie awe Sivmm as the niau' of entrie

in the bount pair lists0

5,2,,3e3* Typeso All arrays declared in one declaration am' of the same

quoted typeo If wt type declametor is given the tyrpe ral is understooda

5.2-4- Lam'r uppw bound exresions

5.2-4-1. The O~mssions will be evaluated in the saims MY as subscript

expessiors (cf., aaction 3.1.4-.2).

5.2.,4.2. The evrassions can only depend on variables and procedures

which a"e non-loceL to the block for which the array declaration is velide

Consequently' in th.) outermost block of a program only U~M declarations

with constant bourris may be declared.

5.*2.4.3* An array in defined only whben the vaueas of all upper oubscript

bounds are not smaller than those of the correaponiig lwer boa~so

5.2.4.4. The: wwazssiors will be evaluated oceo at each entrance into

the block.

5.2.5. The Identity of subscripted. variables

The identity of a subscripted, variable is not related to the sub-

script bounds giv in the MM& declaration. However, even if an array

is declared gI t1h t values of the corresponding subscripted variables

wills at aV ny i.. be defined cal7 for those of these variables which

have wobscripts wi~tbin the anst receatly caloulted subscript bounds0

5.3. SwthDc~ain

5.3010 Syntax

<switch Ust> :s -~<eemigmatiomal .erssion>

<switch list>, <designatioral expression>

<,teh1 dee amtkni> ism 4 <switch~ Ide*W'Ier> v- <switch list>

503,2c, Sxamples

n1tabLS :- SI32,QMu.1 JL V>-QW 83 &In 34

5.3.3o Semsantics

A MU~ deoltiration deines the values oorrepondixg to a switch

idetifier. These nausms are given owi by one as the values of the

designational anreiions entered in the sititch list. 1tWth each of thene

designationul expre siors there 1s associated a positive integer# 1, 2#

Cmobtained by comting the itmw in the list from left to right* The

value of the switch designator corresP xIn to a given value of the

sutbscript expressioni (of. section 3.6. Designationsl Exressions) is the

value of the desigxrtional, expression in the switch list having this

given value as its issociated integer.

5-3. Evaluation of expressiom in the switch lis

An expression in the switch lis Will be evslvated every ti'm the

it=. of the list in which the expessiua ocoirs is referred too using the

current wves of all. variables involved.

3.3-5,, Itifl e 0c 02" Goopl5o

Aw reference to the value of a switch desigator from outside the

scope of aaz- quhzti~y entering int the deelgnat~ona1 expression for this

particular value Is undefined*

5.4o Procedure Declarations

.50

5.1. Syntax

<formal pmara-ster> i -<Identifter>

<fomnl parmter List> it- <foml paamater>

<formi pmwter list> qwftster delites'>

<forml peratw>

k <formi paramter pirt+> a a- <mqpby>j (.<fonl pwmeter list>)

<identifier .ist> x.- <identifier> Identifier 1ist>#-aentifier>

<value part> :s- yflA,]lcZ1ntifier list> ; I<emty>

<specifier> s:- &a~r~g I <type> IA =a I m zf 3akoJ

Mgaodaj<tyA>=Msi= I I I a

<speciflation part> a z- <empty> 1-<spcifier> -adentifier list>

<mpsification part> <specifier> <Idetifier list>

<Pmoodiwe hemdimg> a s- <procadvre identifier>

<foriial param ter part> ; <specification part> <valu, part>

<4ivoesdure body> aw: <statunsat> I <=ado>

<c~oodwe deoh~rati',on> a:-

wwm <Omciw hosangz> <proedure body>

<We>I Woyn-coceftre)aading> <pa'odmm' body>

5o4.2o Enoples (see also the cmqsso at the and of the report).

ycrdr spur(a)Ordor(n)ResUl:(s) ; jai= n;

m ; U&MM n ; 1.l a

kd jg S k

fa k to 1 "~ 1 3JJIU n ft s s- a.+ afkok]

Exmples continuedt

Mam~ franspoe(&)Or4,er: (n) j UU&i n

maa j jlte=n I

h~gA A-w t& Jj g k I

fi :-1uda1 m
ft k :a 1+i a&gM 1 ggLU11n ft

aI~isk] s- aCkviJ a

&aklc t- w

intgM~ jagb Step~u) 1 __ u I

step :a, 4t QNiAuv Ma 1 glg 0

99nI" Th absolute grastest e1.msmt of the zatixza

of As. n by m is tansfrred to yp and the subscr'ipts

of iihiselmst to iandk I

am a Ud&= g upmIgk MI yJi

kaJa It&=n pt q I

ggW p s- 1 stgM 1 v= n dm 9w q do1 lm 1 3MtJJ jk4

IL &b;K~J 7 a±:'ymbs&pq3 p i

jWuAAbmm

52

Examples continued:

3BA~ft risrp~dut(ab)Orderl(k~p)Raisult,(y) j

UaI&M kvp I3 M Jytatbv

at p 1laUl]=k a s m a b j

5.4.3. semntics

A Modelartio serves to define the procedure asociated

with a procedure identifier* The principal constitunt of a =gd

declaration in a statement or a piece of code# the procedure body, whuich

through the use of procedure statements and/or function designator. may

be activated from other parts of the block in the head of whaich the

Wpgd=decjarr'-'on appears0 Associated with the bodyr is a headimg

which specifies certain identifiers oaccuring within the body to represent

formal parameters, Fammal parameters in the procedure body wiln, ubesver

the, procedure is activated (ate section 3. Function Deintr and

section 4.7o Paooedure Statements) be assigned the valuse at or replaoud

by actual par'mters. Identifiers in the procedure body which awe not

formal will be either loca or rn-local1 to the bocW depeodizig an whether

they are declared within the body or nte Those of thin which ame nnlocal

to the body maybellobe lotoUsb]k In the hooof Whch the

2CMd= declaration appears

5044. Values, of functiondsitz

For a SCOR d ecaat to define the Value Of a fumtcn

desipator there wafts Athln the pooes boo& om - M"POWI Ot

a value to the procedure identifiers and in addition the type of this

* value must be declared through the appearance of a type dec2*nrso as

the very first symbol of the procedure declaration0

Arw other occurrence of the procedure identifier within the =90MM

body denotes activation of the pmoedure.

5.4.50 Specifications

In the heading a specification pert# giving information about the

Ictixe and types of the formal parametiers by =wsaz of an obvious notation,

may be included* In this pert no formal parameter my occur moethan

once and fwrml parameters called by name (of* section 4.7.3.2) say be

emitted altogether.

5.4.6. Code as procedue body

It is understood that the procedure body xsy be expressed In noni-

20A L Iaagues~ Since it is itended that the use of this feature should

be. entirely a question of herdiae r esentation, no further rules oncen-

ing this code language can be given within the reference lanae

5.5. Kbo Declarations

5.6500 Syntax

~Ao heading> it a-*ro identifier> <forAl parmter part>

<Apecificatin part>

-nacro bacdy> :t- <tateet>

<wcro e mclaration> a:- gN= Amc hwWImg> 4*aru body>

54

5.5.2. Examples

m Innerproduct (ab) Orderw(kp)Resuit:(y) I

inteur. kgp ; Xg S S

S: - 0

r. p: - at= j A k da S: -8 S a xb I

yt - S gnd Inneproduct

UM Among (xy) Predicate:(B) lbdt:(L)

liak y

B~oaai B

notn1k B is Iru if and only if the log l ol variable x is

an (indirect) elenmnt of the list y I

sgja seqe(yL) I B: - false ;

St It YCp,* $I 0A yf 4.0 MW MS& :-u I=

92n t& L Md.

5.5 39 Semantics

A R~j declaration serves to define a macro associated with a

macro identifier. Macrae only exist in the processing interval from their

point of definition in the lexicographic sequencing of code to the MA, of

the block in which they are defined - and, In tims, a3W during Pass 1,

The principal constituent of a macro declaration is a statement,

Associated with the body in a heading# such as with procedures, except the

concept of gNN 3MJj have no significance with macros, Whenever a macro

is called, the formal parameters in the macro body will be repla-zed by the

actual parameters correspondling leading to a row setion Of 2oAL "a

55

whiuh will then be inwUi~ately subject to processing. Replacement is

understood to occur simultaneously on all parameters -- all their

* occurrences in the macro body.

5.54.* The replacement process

Any string of characters satisfying the syntactic rules of actual

macro parameters, (see section 4.9) may replace an identifier.

5o. Equivalent declaration

5.6.1.o syntax

<inner element> t :- <simple variable>

<outer element> : :- <simple variable>1 <subscripted variable>

<simple pair> ::- (<nner eloment>, <outer element>)I

<pair list> : :- <simple pair> I<pair list.>, <simple, pair>

e<equivalent declaration> : t- g.JA1wJ (<pair list>

5.6,.2* Examples

agu1rmlgAt (ApB)# (TATY, PI (ioj~ij)

3.64C. Semtics

An equivalent declaration declares an Identifier# (the inner element)

within the block containing the equivalence declaration to be--in every

reopect-identical with an identifier(tbe outer'element) declared in an

outer block.

U~~Lbra.,y declArstion

5.7.O16 Syntax

<ildentifier lialt> :t-~ <identifier> <identifier list>,.<identifier>

<library declaration bead> :s:- <Local or own type> k py

<l.ibrary declaration title> : :- 11brM~ Ikr INU= Mush

<Library declaration> ::- <ibrary declaration head> <library declaration
title> <Identifier list>

3617.2o Exarmples

Itn RANDOND NTMIOOT

I=sa 3r a SORT

]JUbzM Mead~3ir Xp MTXINVSE

5~~.semantics

The library declaration serves to call a machins coded,, non 20' L.

procedure krom the libriry Connecti on to the procedure is mde by a

standard procedure- statement. AU. storage requiremntsp except actual

paramteras are provided within the library 0

The 1kzl2 woMI declaration. canls a 2 0 A L procedure

declaration from the library to be substituted in the 20 AL code for the

occurrence of the library procedure declaration0 Substitution of these

procedure declarations in made in the left to right order of their nmes in

the call~

Part II Flow Charts for 2 Po

1. Philosophy

Flow charting an operation of a processor such as 20Ap must

inevitably be complex and-at tises-somebat machine dependent. Every

effort has been made to mininise references which are of the latter kind.

Nevertholess, whex.a they are required, specific machine instructions will

be used and their explanation given at that time. The flow charts will be

given at several levels of description and the detail at any given level

willbe a function of the processes being described. Sam descriptions

will be in text, others in a semi-formal notation.

Flow charts are extremely difficult to read under the best of

circumstances and the use of' formal notation exclusively makes them elegant

but impossible to comprehendo However, occasionally it serves the admirable

purpose of a shorthand notation and it will be used in such places and

defined at the point of use*

As has been mentioned the processor operated in three phases:

P1, P2, P3, loosely described as passes over the code.

P1 is an assembly phase and a translation phase

P2 is a compiling and loading phase.

P3 is a running or operating phase.

Intervening are two transition phases Tl, T2$ which work on tables

prepared during passes Plp P2 ; and P2 P3,9 respectivelyo During these

phases for many of the 20 AL elements there is a point of declaration (D)

and (often several) subsequent points of call or use (C). The notation P1,D

will refer to snw action taken at a declaration during pass 1.

2. Pass 3 Disposition

The processing becomes more ar when a storage map of a 20AL

progrm is speci iod. Schematically it is:
Flow Chart
designation

(own array FO

Fixed Data stas co t FC
scar variables FS
jlist tabe FnL

and

Administration BA

List Storlage Pool eIP

Program P

2.The aiveb DA
and

Scalars DS

P earameter stack PS

Distribted throu&h this storag certain tables are present In all

or nost prog~mi They are s

1. The list table LT

2. The active block or pmew table ABT

3. The larasiter stack PS

4. The exit stack ES

DuringPl,D a ablock is eniteredo knZ ..)it is

assigned a name (r), a level (Bs), and a tag (Bt)o The sms are positive

integers satisfying: if the black b of a blokc(ao (leideo b-

iaeey) before the block bkan of a block B then U < BB. The levels

speify the depth of parenthesis nesting with b an opening parenthsis

and W a closing on Each levl will correspond to an assigned

Ind register. The block tag (Bt) specifies vhethsr the block is internal

to a prooedure(Bt - 1) or not(Bt - 0). The teem 1-bloak or O-block wil be

used to distinguish blocks by this property. 1-bloc). can, of cowse, be

part of a recursive process aM its declared variables must be treated

dyOMCaUl.

In the case of 1-blocks, PlD must gonerate code operative during

P3,D which supplies information to the OAdUstration routin BAo The

information supplied mn-L carry to BA:

() The block nom.

(ii) The block level

This information is added to ABT in an augnented table line:

Ar had ben generated by AB! and then indox register S is loaded with Ar,

In either caase, for 1-blocks and O-blocks, a code line is entered

into the Code Block Table (C B T) active dizng PlD:

line ntober Bt Block raw Block level Base address

I n r n n

60

3 , Code generation and Table Generation

During Pl and P2 various code and table genaz on actions '-a4e

plae. If a table has the n @ then @ 0 indicates the Lan at

which a marker is poised ® * indicates that the aker has been moved

fozo-d one li.e If @ has a field structure,, eubtitution into ind

extraction from. fields is indicated by a variety of *bviom notations.

Thus, eog.,

specifies that the contents of Bt, Brp aml e are put into the 3p 5, ad

6thfield of the next line of CDT and (blank) into the 7 th field.

During P1, codo generation occurs. This code in either 2(f'L code

(say, as a result of macro calls) or a form ol 3 addrees code# witten, e.g.,

T'3. 9. Y2. Y1

meaning " 4-?- e V1 in oeventional notalion. In a given line a&W of

'l, Y' 2, '? 3 may be nisaInM A collection of 3-address code will be reog-

nised as being collected as a unit by the notation

(p 4lp 429 *OV

where each is such a 3-eddes. code line.

The operators 0 winl be those most lsdaeyderived from the
somntios of

The operators 9 wil be those mt nmedistelY derived from the

semantics of 20AL operators* A table contaiing the notation and meanIng

or &31 such follws:
3-address operator table

aiItI W

+ addition

x mltiplication

/ division

* integer division

ceponentiation

itstore in parameterstc

XT mark transfer

or store

Ph procedure begin

P. procedure end

Eh block begin

Be block end

L label,

In P2 the three address code is converted into machine code*

Here, detailed knowledge of a machrn is necessary and only the general

method of such translating can be discossed without becoming overinvolved

in specific computer details*

In P1, whiere the major assembly and translation fimcUt~o aWe

acomplished there are two major code sequenow,:

(i) 2oAL (input) code

(ii) List organized three-address code.

The organiation of these two code sequences is quite different*

(i) is organised as a linear chain while (ii) is organised as a tree.

The fundamental distinction is the mode of their sequencing. Each has

a marker denoted by a sub-line t; and this marker Moves through the

sequences in different ways. To be specific:

In the case of

(i) The marker mir move relative to its current position

designated as I 0 (Input-current)--sny nunber of character positions

(spaces e0cluded) backwards or forwards.

Whereas

(ii) The marker may only move back by moving forward to a

list sentinel and up several lists higher in the tree structure, through

the application of the sequence procedure "up"o On the other hand the

code position S % may itself have substituted into it an entire list through

which the marker position my pass or by-pass as occasion demamds.

In the case of P2 the scanning of the input sequence (IS) is the

aiecking mechanism: The nwber of characters to the right of the marker

is non-decreasing.

The scanner is quite elementary. Characters are either components

of identifiers, nuebers, truth values, or delimiters. In the case of

identifiers and numbers, these syntactic unite are multi-charactered,
a

and, when encounteredare accumulated in an accumulator until/dellmiter

s reached. In this context this delimiter is Irn , as a terminal element.

The scanner is under control of P1 translator routines each of

which has a set of terminal elements, the occurrence of which create the

64.

oonditione uder which these routines select their actions,

Of course, these termimil elements my theslves serve to activate

translator routines,

In order to organize the translation sdiems, the ft code itself

Is the master control scheme. Sites in the V code my contain the nime.

of translator routines, eog., X.,) designated [X] p or# Of course,

3-address code. Progressing through the tr code nov specifies the control

organization of the translation process.

As a miatter of efficiency, certain translator routines have their

own sub-conitrol organization; for example, the "expression" translator, and

that for scme of the declaratiou.e Indleed# the "expression" translator

produces 3-address code in a block rather than a list.

In the case of maW of these special routines, the sub-routines

function when certain character seqnnces occur in IS. Their occurrnce

causes certain actions, these are cuitosof:

(i) Code generation

(ii) Substitut ion into, and mvement of the markers

ins Ic and C

(iii) Operations on the auxiliar tables generated during

the Pass&

These actione will be noted In the fomi of productionsal

AS -, ()V q ,?.-= ,1 ,,," ' 8 g(Imt
meaning: If the character string ?, is of the form Mr £;R then actions

Oaj)QI eteo eaccomplishedl folowing which# 0(is the label of the

rct~ production accomplished. If not of the form,~ Y is the label of the

next production.

1

b. The flow charts proper.

AA
The analysis of a 20 L program is controlled by the

block structure of 2 0 P& Thus the flow charts naturally divi 4 into:

(1) The analysis of deolarations since they define

that which occurs at the beoinning of a block.

(ii) The analysis of statements since they toxm the

content of a blook.

(iii) The analysis of exressi.)s since they form the

content of most statementso

(iv) The analysis of identifiers since they tom the

content of most exressions

(v) The analysis ofsth* blok and since administration of

storage and Identifier scopes is controlled in that way.

The flow charts reduoce 20 AL in a3 address pseudo code

-7.us certain tables out of which a machine dependent Pass 2 would pro-

duo* machine code.

The 3 address code so produed Is Itself tied together in

a list structure. In general, the notation of the charts will be that

of 20 L.

e lovcharts for declarations.

Mlock, ,l i e .I[a a hm.

tg.t sr(o[.O]);1ot(o[.,])j 1[.,]

go to main declaration end

Blook end Aid

ggo t statement

65

mni The next step Is to Chock the ocoumauce, If any, of

a declaration;

I-Sain declarations a declare (UV) a Vi

.kaz k Z lookbed; v g~ mgd

reel: deolare('r3ea.d, rel 1)

declare ('ntatspq'-, intoge 1)

declare ('lo l', logical 1)

declare (idx index)

declare (*lip' , list 1)

declare ('Ioolean t , Doolean 1)

arrays declare (Xa2zy;, arry 1)

declaroe (1 p).. e ', procedure 1)

declare (t frC, library 1)

declare(Iw *1, equivalent 1)

doclare(O-.. st macro 1)

If xL,O]n') mn thon 02L12 comengt

If 1[101 *'vawog~ 1tenq9j. value

olg compound
A

SThe preceding is the switching table for declarations in 20 L

Blockhoeads sf as+ 1; r tm r + 1; orbLk in r;

f ,eld(2, IT [I) in) Un

B3T [,)im lt, r)

66

lodckhed 1 I Dt

begin iart (30 O[603)

o[,,] am oode line C ' _. 3i . (r) . (S)')

o[,*] 1- Code line (U , Tr I (k) and

~qoI(Blocheadl)

ceant 1. orblc holds the index of the ouzent block being prooessed

2, field gains aooesa to the fields of jables

B t is a blodc flag indicating whether the block in interior

to a procedure declaration

c, code line is a procedure gmerating its aotual parameter

aE a oode line

5o BA is a fistd location whose contents specify the variable

location of the block administration routine;

on It delta [] tm. f,] a, n.l if,*]; gto real

zweal 1. delta L2) aM tiMA, rw 21 1[.*] sm1aw';M 111*1

Up At9 arMa

Integer It delta 131 to ~rUe; qqoA ree2 2

looical I a delta DI to touj 49t* rea 2

Boolean Is delta [5] in Ugq Ug_19 real 2

Ind=x Is delta [6) in tqiqi indez 2s 1[,,O) in Oft r~ [.a

qoto declaration;

list 11a delta [7] am trAoj Up to index 2

ary1 8 delta LODl in t~g Q; iind 2

prooodure 11 delta [9] to 1.j t t, tk'qqj T[,*) prenegt a prost + 1

art (oL , I); lit (O[,*) mrt (2. o[,0j);

pam .. 1 ,i[,9] = letter

thmn

67

begin A in identifier aaculated! inir t m true

delta [iz] to &=pl IT identifier declared

o[,,] code line (oCA). Ph._.)

next(0[,0] t code line (e(A). P...); x,*]

" 1,01 a '(1

procedure .3 bon I[,*]; I i [,O], letter

then

begin A sm identifier aooumulatedi I-M identifier declared

I[L [0] a then _qoto procedure 3

if r[,] a) then o to main deolarmtion

23Ae D A ala end

*o Qq to alurm and

om~mentt The procedure name in declared and enteard as having label dbai..

actor, Each of the actual parmetras when declared in deolared vith

indirect and pa=e set to true to indicate their atatuo, proeet speo-

ifios the depth of procedure nentina currente

declarations bein j in 0

declaration It If Iso . i letter tho o aJlarm 3

e A is identifier acoiulatedg j in .l H.i[J] to A

DIT identifier declared

If [€] '

then go to declaration 2

dea~~'ction Z 8 1 ' -L oode~p teria o(I Kj I0t~

declaatior 3 8 [i,* R. m ood li (o t (11[j)),,fl

then it; dlo'tion I

o~h.~i'~IL ~ - ~to do xltwo ia

4oclarati.on 48 1Q V 2. =1 o p unt.i 1Z mow~t 0

-p-t statuacait m-trni ed

Poxmi doollaration banaies 1iotb og jdenttL- , ,,ocessing th.0 w~a

do~aati~on mrd, in prticulart handlos3 array adoo10sotionath In ease of

atrra73 z

(1) Of 2 jimneno A Lmng n, TS el thero ia omputod

vxlr mas(arl

Bpaco ~ ~ xx01a b (n-mi-1)

bao atorago base -~ r -~ z * ooiux4 n

Storage basom :torttae 1X400 + Opflao

and 'there is atorad in. Tbo cadden asinod to A a~ndI its micossox~ brin

and c1ut'mn, The map=C, tunctimi for A [i~j] lu thmi ba + j + ~ oin

MeI O~J±f anlyzorI T. rovi±cw t, I. QX 1a~e md t, 4 zci~olurn;

et~u~IJ8 m~ 0; 1~ IO.

i$ XL ~ ~ Wian go to &awm

69.

At w identifier aocumulated; ja J Dl; j[j]t)A

If I ,) , then #R to ala~m 6

As a identifier aoauolnat.dt j3mj . I.1[j]l mA

if ',] a [o

equivalent 21 Ku 011T M.vre, ion Analyser

,i - ,.1; 0[,*]* a cod. line (90ja]). 6". tl)

As a KlJ; indiroet: - true i M identifier declared

equivalent 3t AA I

4f Q5Qp equivalent 1

then go_to declaration

end

if 1 [003 - t

then jpjn

J0j4l; Aim U- j ; 11T' identifier declared; jr-j4.l

At a K[,I; IUT chain; potjo equivalent .3

e9nd

oMgnt equivalent mWoea idantifiern within blocks identical to those

deoloaed outside. In the case of a variable equivalent to an aray this

equivalence is established dynamically0

value 1t x [,O]s - dclar

value 2s I [,.*]I ift,~ letter

70,
; ., ,,, j.t, ,o_. alarm 3

At Idenitiir Ia nuetat value

t)~got vlue 2

the qqoto0 deaation l

Salarm Z

got values I delta [3.0]:- 1; CT ldtlfter deolaredl allise?

29U. idntifiorn declared an valuess have that pvWoart l~aWe in

the identifier' tableo

q:&M I [$*I; 1 1 L.] -

.. D got. statemet end

Macrot I 1.*J delta [ii:- tr'u

then QR. t alarm 3

As a Identifier aoowuulated; I dentifier declaredl

I t,,3a z [,*]

ZMacm 1 I I 1A, J 1 letter

Ataidentifier accszulatedl 1-a E.*]s a A.rr'

end

it I [,o ,,o

, [$*1; 2o-to acro I

and

no

4Ta a Macio tilei string transfer teriil a '.pd*

strino transfer storages a. mamao file

?t, string trunef

Maoro filet I-Zero tilo* string transfer no=

Qotq, declaration

Comment Ilacros a" stored In aoe 9external' file whose index{ is in Macro file,

LT is the table of L.acroo declared. Z.11 in the table of .Mcro identifter., String

transfer is the table of N.cro identifiers, String transfer is the name of a

prog.em which napa 1 [90], up to the first nonanatohing end, onto the ,acro file;

library; delta[13J a 1g 1 [,*] ; I,

library 1 t kegiz I L*;~IL~ letter

then.

L%&b. A:t identifier aaoumaulatodl 4plta 1;18 1

NPidentifier 4elaredl qp~tp libay 1 ead

then Qo to library 1

ef I L,€])J *li

t~en, to declaxation 2

t alam n library I

*als

beqkn As= identifier aooammlatedl

- IJ9m library table (A)

Js field (2, J)

72.

flint nemt (I I& Ja Amefi
lst 1x[003)

copy (I[,o]J) 9oto main declaration end

gwp library table contains antries by no, and peArpheral sto ace

location. Procedures numd in MI.lM dclamations ae mloed at the end

of Pas 2e Those named in iban pvocoduf declaretiono are Inoerted into

the code at the point of nomeo

6. The analysis of e)resilona.,

The empresion emalyzer produces 3 address code from the analysis of

of eressions. It aots timough encoumtering dolimiters. The delimitera

upon which it acts are#

f * , +9 - <. :go ># #t ,"I.A V..l., , ,),, ,], 0, t a.
I3, %, It-' <,

The order of their listing from left to riGht detemnines their order of

eecution within m expr ssion

I [to] has the uoual meaning a indication of the current poetion In

the the input sequee..

P [i] is the ith position in the as-yet-vnfultlled epresion stacko

0 [j] is the th position in the output sequece vioLh is a block. Ther

Is an 0 [V40] which points to this block.

6.1. Analysis of anraos

Aawn awy be ohmaatewised by two of their proptisat

(a) ThW oare of Sized (variable~miaension, a 0 (1)

(b) Thy s" deelored in a block exterlar (inteior) to a

proedturebO (1)a

7 .

The catalouo of actions In the four osae a olvex In the follolo

tables

for A I, .J
De tCaonll

Am O A.O, b a 0
code for'

Pass I A v. * bass A + I + 'l L

A + Is a oolim

Puss 2 enoeution of above

Am* 0, b a 1
code for

pass 1 A+ j + *i.+ P *if 10

compute pin BoA, routine

storo A in Z

A+ j + A+i * i

pa 2 wouiton of above

A. a, b i 0
code for

Paso I A abase A + A Z *1

,'1 I a. col'tw

Pans 2 =maution of above, ezooutloe of above

a w 1, b a 1

pawuI A [it;awbaae

A + -, olzm A[] + JX+i:] *i it looa
o'
compute 8&:Ln D.A. xoutine

snover. ini

Pang 2 iac tion of above uoeution of above

7140

- - 3ZRW0SS1on aX.1~aws Ev 71 It I [20A- L dslimiter

b~Z* P [i) sm I

ft3 opiwator (P[i-2J)APlroeea (P[±:..ZJ. P~imil]

[**I', ARVEx 7 Aid

be~i As a identifiar twowiwlatod

IIT identifier munwtered

PL~Ju *(A)

fZIx It. p [LI. a Q-'Ai Ci.2J da3.itwr

Lxg1 P 11-J M~ P [I I; issa.9; 91. tO ft 7 AA

co to alxtm 11 and

ZI LJ*digit V 1 [, 1a.' V 1 . '10'

begin As a rnabiw acamantod

NT niaaber cziootuteed

P [11-8a me(A)i goto Exz 2 ad

go to nla~a 7

11 i ift i.Z1 If aritmzwio (PCI])

bein jP [il)U*ts A P~i*1mtm

then

teain ra = =1n (lom); ot a maz (1,m); taW ED] jo pu .

beain it PEL-i] a t~l

then rtul

*i; P[.1l a tol

than rs a 1

also ri :sfirst available (tunp)

beaft im first available (tap)..; tuap [r]v s,~

[Jt La oode line (tsr. (P[i,(PL±4'j) (P[~L+]))

JaR* J+11 PEI-I~ ttr; P(Ljs 0:P1+]

*1q relational Pt)

than

bii . PL±-.l~ ti jl s tamp Lill. tprue

ju.code line (.LL (j ±z~ &L4)

its: i4l, B[i~m *ode line (m.j. .G&73. + Cy2e~

P i-l j "L, J; P lil toP[±4z) I Q210 R d

3.logical (P[1]) A 1300100n (PCi..lJ)A1bolean (P[EI)

bei m to J+2

760

qsa field (2$ P~iJ-i)

a's a field (2, P[i.,.)

to- fivld (1. 5[r])

field (10 LK) field (Is 3[q])

beq a a field 5[q ~c])

field IZ,~ q) a t

En 5.a if chain (g))

pegn us a 1

at a field ([u])

fEield (,[uj))amt; Do to ft gnd

field (3 [L]).. a aain taij + q aid;

thm

becin as a field (3*~C3

tiold (3, [Q)s *t

R 6t 1 abohan (a)

then

a: a field (3* 0 [u)

field (3g [u]))t t go to Ex 6

field (,0[r])): a chain tao + q and

P [io-1: Ia P Lt-11; PEL]: a P U+1.2; gj jQ, N7 MMM

770

~~~II ij soode line 0,.2. *.toz. t'l); j~~

O L)'- ode line 0t,2o +o t#2, e(i1)a ja: jiii

~ Ci:.*ode line (t,2. abo. t.2.-.

b"jI [3): code line (t,4&. * * 1$0 t# 9); izmj~l

w code 0(1 line (t.4. o+. toh. e(l)j jtnjgl

[5 Ca code ine (t Aj, abo. tv~o-.j;

, P [i) - o to eeoon.

iAAP li)tgo

bapi i proagw [1-.]

booln J: a J~i; ~ as oode line (I.. (p[ialj))

JS wJi+; [JI to) o ode line (-oq k)) o.i..f

a, al; Lau-code Line (blan1k)

them

~ ~,Lprowv [1c]

then



begin 3: J+1; 3(j): code line (I4.(Pft-i]) ,

J: J +1; O6[jJ:m code line (-. L.

3: J43.1; BEJ:-code line (go to (L (k])0

Ex 4: bng.1za : -i-1; If PRI -sa(I

then

begin v: -i; M: -1;4. 9 -Ex 5 end

else

begini: -i-1; V-to Ex 4 &r nd

E . 5: begi j: 3+1%; O*CjJ code line (M (P[J-IJ)

b in : sd ;IsEcJ; M10 oEx 7

else

40i 3: J +11 OCJ] - code line (-a..t (P[iorl]), 'T(u))

P[i-2]: - PCI-i]; is -1-2; I(.,*], go to Ex 2 end. end

then

Ex 14: a.i Pi-2] -t,'t A PC 1-6] - 'delart

then

t# J3* - J*l, 6[;]: code line (to,*,t,2.t.4)

J: - 3+19 Of 3): -code line (tvl,*.tp10t,4

J: - J+1, 6tJI: -code line (tvlatotplt,3)

J: - J1j, OQJ]: -' code line (t.1., 4. Storage bee0&,I)



79.

.I 1 0 ( 3+]: - code line (storag base@ .oStorage base.t,2)

thiL

~!~ J: m J+1# FII cd ln(3]8i5v 't.tl
J: - J+1, O3CJ - code line (e(P[i-5t).1- st.t.A) 4

J.t 3 , +1; ]: - code line (e(P[i-5]). at. t, 1)
1- t1, 6iSt-4,w oidA Itoo* ( e( FrA - ),. t, f, f )

El71 iPRi-7] / array then begin P~i-5] -Pfi-7]; go to Ex 14 2W

ajia,2 expression end

P [i-2] - *[,Ap [i-J] - ,dW

begin J: - J+1; OJ]: -dode line (t,2.+.t,2ot,1)

J: - J+1; [ (j]: - code line (t,2ot,2. * (1))

jj 3aJ+1; [j]: code line (t,o+otlo e ())

3: - J11 O [J]t code line (tl.. storage base. tl)

j3 - J+116 [J]:- code line (storage base. +o to,20twags base)

ifProcnle"t~ 0

then

begin J, - 3.1; 3[Ju - code line ( e(P~i-3])v I.a*t. toi) jg.

be , : - +11 JI3: - code liez (e (Pli-3]). ,to t,1) ,_a gx
if. P [R-23 lot,

then

Lf nontd~~c (P~I-5]) A PEOcaeet - 0

Ex 12: v J: - 3+1 0 (l3] - code line (t,1.,wt,1. o(P[-5]) + 1)



3: +311 O(] ode 11me ( T. +. tfl.t,2)

3:* +1; 5~j -Code line (tslaet. 0 (Pi-5])0 I) o

it nricd (P[-5)Apomat -0

bpn it local (p1:1-5])

IM~ 41; J+11kil - code line (ts,2...tma. 1) 91

Ge

kps J: - J3.1 0 [j]: - code line (rr.BA)
Ex 33: JS - J+1; 0 (3]: - ode Ine (t,2.+.2.1): and end

if dynamic (Pi-5]) A pmoonst, - 1

then.

be j 3 - 3.1; 5(J: ewced line (t,1.*.tai. * (Kri-5J+l). I)

J: - J+1; 0JI (3: Wcde lie (t1.4..t#1.ts.2)

3: - 3.1; ril ewe cd line (I. at. e(Pti-5D I)

3: 3+; (3: code Line (t*1.Gt.t,1,LI) ad.

JS~i 3: +31 0j~ [3]: - ~ r BAeln f, ); 4pto Me33 uud ev&



if Pli-2] * 'C

then

b i nndwi (jC-flApons -0

theun

Exli 3.1 & i -: "+1; I:3]:- code line (I* at* tvi)

3: - 3.1; [j(]: - code line (to1.st. .(P~i-3]))l

*s

g! dyzamic (p~i-3]) Aproenut - 1

bbi if P~i-3] - local

3: - +1; V(3]: - code line (bplosto a (Pli-3]))

sLjQ..Jf 15; ad

LMO 3: - 341; 0 (3]: - Ode Line (Mg~ BA); latoE 16 aind

bogip 1L dynudi (P~i-3J1) A pioast -0

the go to J

*US.

bgd1 M dynmic (PC 1-3]) A pmocast 90

then k! if local Pli-5]

then e ~xl16

J: - 31; 6* ]: -code line (MZDB*); go Ex X7 end



MIA. SLIP9 slea Sq~j AS4 Ex 17 ORM

J:1 - J~lj 0 [j]: - Code line (I. sto to 1,0 Iw%-

EL19 Ex 17 axi

IL PliJ - 'then'

thmn-

btg q2 - field (2# PUi-i])

8: - field (3, F [q3);

field (3, 0 (q]): - 3.1;

Ex 9: JLt chain (a)

1WA~LU U: - 8; as - field (3, 16 1u]); field (3, REuJ) J+1

at - field (4.p Of q3);field (430[q):

EZO 105 chain (a) thamxbg ut-si

I[#*]J; go t k 7 ad

&in ut Pli] -1 20o~ 90 ttemnt

a1aa if Pci]- 'eut' tho MJ5 statint

if Pi~i] - 'C' tb l isiini*; P-t I 7 mRL

tot lr

Ex 19: 11 PEi-1] - ida*.ifier

then



begin k: - k413 a~k]: label

3: - j.'i; 0 [J] aoe line (blank)

L [k]: 3; procow [kI] - tru und

I ,*] po x 7

Coement Actual partmmtes of procedures awe coded as follows

J3.:bJank

Evauation of
parameter into tl

h&Mrss of tpl into I

go to Jv-

These parameters will be entered from procedures via a H coinAodo The

address Jp r m" 1,2#39,opq Is stored in the m ent4 available parmeter

position in the procedure parameter stack o Thus the total coding In

pto K

cede for parameter I

code for parameter q

code for storing J, into I1

code for storing q :into 1! q

Is IM Proedure Nane

I



84.

7. The Analysis of statements

t mouI C t*1; 1ifI(,0]1etter then goto cmpoundl1

A: - identifier accumulated

if I t]-:f then. go to compound 3

go to compound 2

Compound 1: kejig if I [po] - I'if't then go to if statement

if I CPOJ'go to' then go to so to statement

if I (POI - tfort  then go to for statement

4oto alarm end

Compound 3: t!#n delta [12]: - 1; MT identifier declared;

o (D*J: - code line (jj. L. e (A).)

go to compound end

Compound 2: begin If I[D0J t (t then go to procedure statement

If I (,]-.t:-t then go to assignment statement

If I C,01 - 'j' theni go to asembly code

If I CPO~] - 14t then go to assembly code

If I (,4#] - I~ tejgo tp statement end

If I [so] - tend' the sojpc~o end

Assigunent statement: isrt ( O(,d]); blacklist (Ot,*]); 0 (*

go to~essie anlyser



85.

procedure statements nto Assign statement

if statment: :zel; jert (2,0[c]); lab.e (WOC]);

next next (o[,cl] - code line (_. L.e(M(c]))

- list (o[,*]); isrt (7,o,]); label (c])

label (Mc+2]); list (o[,*]); isrt (%,o[,p])

o[,*], recog iser (Boolean);

0[,*]- eMc+1J; 0 [,*]- e(M[ac2]);

0 [,*J: - code line (_. L. e(fe+l]))

O[ ,*J: - recogniser (unconditional statement)

O[,*]: - code line (-. &Lto. e(Nfc]))

0 [,*]: - roogniser (else)

0 [,*]: - code line (-. L. e(N[f+2]))

0 [,*]: - recognizer(statement)

O[-,4*1- code line (_. go to. e (M€c])))

head (O[,c]; a t master control

The list structure built up for if statements has the form shown in

snapshot form below. Zl# Z2# Z3 are label equivalents generated by label, )B',

Us<WWe4, and >6< are the inserted recogxiers for Boolean, unconditional

statement, else, and statements, respective3Y.

,, ,LoZl

,~ (, ), La Up

| ,, , , ,, , ) L Z 10
• ,(,) ,, , ,t l

t,(, ),, , ,) .m



86.

for statement beginul [,*]; if I(,] letter then alarm

A: - identifier accumnulated

Xt-A; iort (2,O(,#]);

as- c+l; d: - c; label (N~d]; c - l: e: -c

la bel (Ne.]); =t (2) (0[,#]: - code Line

(...L. e (NE.]). _; list WAD*]; isrt (3s,0(4]0) next ()091

-recognizer (forliat); next (2) (0(4]l): code line

(_e L. a Nd).) next (3) ()(41): - recognizer

(comp~ound); 'block list (Of,*]); gotoE 7 end
for list if a1 , f-J? 2ItUAPi2~~~tt.

U~ Ff1] mtjhg M go~a &a step

i f ] Ki lm#4l' the " until

if P fjj f"04A Pfi-2]-'untilt then V t& until, I

if Pfilm'while' h ~no to While

ifli ta '8A P(±2] - then go to-Until .1

i-f PFI M'ot A Pfi-2] w f',' &h~ ER~ do I

comas ~ tq Ln rt (3.0 [8j]) : f:,*])$ - code line

( MT. I!. e (NCd])); block list (0 f,*]); next (flc]):i.
recOPOUr(fors±t); loft (2, IIc])j uisxt (2) (If,#])sw fluutg



I. 87-

11 1;* g. Ex 7.3

Siert (5sO(,o]); ft - C.].; label (MNU); g: c~l

label. (Mg); O0,*J: - Cod, lineC.. Joe(Mt)

o [,*]: - code line L.L. * W4g])); Oct*]: -

cod, line (...i (~]) ert (4#'(,#J)

next (1) (1(4]): - X; next (2) (I(,0]):- 1:0f

next (3) 01(4]): - X; nct (4) (I[PO1)s - 4
block li'st (or, *3) ,7%A( ocp~) s= jec.pA, rev ( fei/4")

until begin iort (6.,01);

0[M*:- code line (M. at. t.91.)

0(41:s - code line L -L e 01+431)); variable (Q~p]).

iert (4,Iflh]) next (1) (Itelc):.aQ [p])

next (2) I(,4]): m :-I next (3) (If..]: - X

next (4) (Is4]): I-"__

next (2) (0[(,4]) t code line (t,1,.*#M.Q [P])

next (3) (0(#4])t code ine (-, .5-tal-O); 03-0.1

3 abel (ME c)) next (4) (0o(,4]) - ode line (--J- e(Mfq]), e ]))

next (5) (0(,4J): -code line (,. L. e (M~c])

next (6) (0[94])t recogniser (forliat)

block List (0(9**])3 jp.to Rx7 _W

until 15 t~k isrt (2.0(4]; next (2) (0(,#V-'' - recomlse

(forlisi.)l block list (0(,*]); isrt 2ICA)

next (j,) (1[*#])$ - X; ntwat (2) fI,] : -

Ex7

whiie:bqgi irt (6#0[vf]);*,,*]: - code line L... a (NKt]))

next (2) (0(4j]): - code Line (_o- tpl. tnag.; a3-01



lawe (KOD]) nect (3) (0(,]) 1 Cods life J.. j. (14]. (11$1))

next (4) (0(4]): code line L. Le e (Nt])

is't (1011S,0) t - next (1) (11J41) t -!W

next (5) (0(,]) #413 recogmise (forlist); block list (0(-s*])

"o Ex 7 "4,

do i1 O ~in ert (28.0[v#1f) O(,.*]s - code line a.)P~ (141:4))

do 3t 0 (,*]: -code line L. so-tqe (NC]); w-j~o 0 (,*] e0.

do 216 Ogz~jrt(, (cD; ipJp do.3

Cumient The for stat.ient is the m=st OCMplex Control staMt in 20A1*0

Thus the at~emet f or i:-E1  %v' -3t ' 3t4 3405 #4P 1W- 6 !!41k B7 18O 8

would generate code Controlled as follows:

it- El generated by for

S. S.- geneated by comm

E2 i-r generted by exiwesion ansL7uer

go to f

l abel g ga te by,".q

3f

I :-t9
:abel fgnea~ted by util1

B34,



89.

p to f
label g' generated by stop
XLd
i i+

E6

label f
if

B generated by while7

3° .g' c

label a'

is - gmnate by until 1

E

_gotoe generated by do 1

label f
statemnt
label e continuation

v to statement: P [l]t - ,go to'; " Mession ana3yuer

statement end: master control

compound end: p to miter control

block nds

Cament The following code unravels all linkages between identifiers

established in the current blockz, The aimle

1 2 3 4 5 6 7 8 9 10 11 2]3145 67 89 221222324 25 2627 28

wheom - means declaration and ) mean block beginning and endi ng# respective3ly

and the order of ocorrence being left to right would cause the following sequence

of actions
1, Asmign x
2. Assiu y

(3. Mlock begin
4. Asign w
5* Enter x
6. Alzao assigned w



90.

7. Already entered xS. Bltock nd, sos chi unassigned x to awped x (1w)

raw" block begin (3o)

9. Already assigned. z through dhan
10. Enter V

32. Block begin
13. Assign s

lro Block begin
1A, Assign x
17. Already assipr4x
183. Enter y
19. Already rn d x
20, oJl*r wnd. so: chain unassigned y to precewding unassigned y

ram block begin (15.)
21. biter w
22. Already assigned x
23. Enter
24, Block wd, So chaf. unassigned x to assigned x through chain (1)

chain un €signed w to wunamge w (10.)
chain unassigned y to assignd y (14.),
remve block begin (12.)

25o Enter a and chain (31.)
26. Assign s through chain (25.)
27. Assign w through chain (21)

) 28. Block end. So an, assigned Remve Block begin;

Block end: begin Ht a K-i; if unassigned ( 2) I?'" p_ , o Bl 1

B1 2: if marker

tblm 20 -H-1; gq.to Bl 2 pr&

if nmbe > legth s]

a length [a]: - m Iae Er-

o to Block and 1

Bl13 MMs - H

B1 3: 1 if cain(TMU]

then M !J M~t-fied (5 DM e])to Bl3 and



910.

Bl 4: if feld (3, T(TJ- field (3,TI)Iu]

Mew &p9tO 015

B1 6: if field (2, T(T]) t~

tbqRBl?7: begin. Tt-T-11 Blt 14 eWA

Q:- Q-l

if Q-O0 then got B1 2

go to El?7

Bl 5: if Unmseigrnd (TC(TJ

-then" i field (5,T(MUJ): Tj goto El 2 end

if block (T(T]) 2t crtblk

then goo Bl 6

BI18: MLY: -H

field (4, T (MU]): - field (4, 71T])

nmber [r]: - number [r] '0 norm field (3, T[MI))

-if. field (49 TDMUJ - 0

then beg0n MU: - field (4,T14u3)g _4_o toi 9 end

field (4,TMUJ):-T; gote Bl12 ppq

Block endl1: if SI -O

thgo top pass 1 eOw

St:-S-i; pgoto0 master control

Master control: 0 (,41];.if recognizer (O(,c])

then gOo recognizer

_go 1to block

Coment The table T in the identifier table, its field structure is

<line nmbher>. <block marker>4 <Identifier>* -<block number>.

<chain nmmber>. <airect>. <delta vector>.



92.

identifier declared, _ if field (2, TEK)) -

g IDto D 2

H:=K
ID N -t H-I; it field Op, TH))s A

thn p_to ID 4

ID 5t if field (2, TEH],B - true

then &jtjo ID 2

V-aID 3

ID 2: field (, TEK]: - K; field (3, T[K]]): - A

field (4, T(K)): - crtblk; field (7, T[K]): - delta

K: - K+l; - identifier declared

ID 4: JLfield (4, T]) - 0

then- " ID 7

MU: - H

ID 6t field (4, T[MU:] - rtblk

if field (5, T(MUJ) - 0

then go toIdentifier declared

MU: - field (5, TfN])

ID 7t if-pars-1

then bs fled (7, T(H): - delta; identifier de-

clared M.jo to ID 5

Identifier encountered but not declareds ;

Comment This routine is ent , red automatically whenever any identifier is

encountered other than in a declaration. The identifier iso

Ht - K-l



93.

31:jg.field (3, T1H]) A

then " 2

if field (4,TEHJ) - crt bik

I[ 3' then Insiv correspondmnt: - HIE 4: - identifier

encountered but not declaed end

if field (4, T[HI) - 0

.jbu g2AQ I 3
IS 21 if eld (2, TEH)) '(,

te H -H-i; V _ 1 end

field (3T(K]: -A; field (7,TK]): -

union (field(7,TfK]), delta)IK:-Kl; to 1 4

Chain ; H: -K-I

Chain 1: if field (3,T[H]) - field (39T[K])

then

field 4., T(K]) - field (4, T[HJ)

field (59flx] -.H; got chain ABC

Hi- H-i

if H-0 tb M~f alaau

__ to chaim

Assembly code:

begin cement This code is machine code and its syntax has been descr 'ed in

Part I. Basically the format is operator j operand or operator -+ operwd;



94.

if mahine Operand (A)

trle &otsp AC I

J. maco (A)

then Xoto AC 2

AC 2: list ((E,1);

for Z: - 1 st ..p whle _mT (z] , terminal signal 4.
boon, it fie3 (lo M lEzI) - A

th jI. HS - fteld (2, MIEZ]); oop AC 3 e .r

AC 5: seqe (V, AC 6)1

AC 10: V[,*]; As - V [,g,c]; seql (0, AC 10);

AC 9t G[,*J; def (t,0(,d); ..ff.A-W&4*J M.Vg &po AC S;

else ~AC 9;

AC 9: ooP (W( ,*J, V[,c); j.ot AC 10

AC 6s coPY (VI,*]) so 5toStatiement

AC 3: COW .(M h, V);Ust ; seq W (Go, AC 5); s ,(V,AC 5)

for Z,=. *st.p 1 w" , I21.e07  do

begin isrt (,o(,J); M*], = MI CzJ; I(,*]; Si-i

AC n list (G4]): if I[,*].t(t

MekqJ hiS:;-541; AC 12: isrt, (0C(# p]); G[ #*] jmI(,*] end
if Ioi l- #)enjgn s S-1; go to AC 32_j

Vj_.AC 32

AC 22 if Ss-0 j jM.. AC n
0_AC X

ACo t end

AC i: begin coint This code section analyzers machine assembly oode. it uses

the address e eimson amalyer. The oorutituins of address expressions are

identifiers, integers, the aritbms1ie characters + and -. The address

are machine dependent and the an&]ZaU given is for the Bend G-O.



AC 25 Lart ,4

AC 35 if ,[ si ple v-riabl..OA V ,1[ ,0L. simple variable

then Poto AC 26

I[ (,IO$(uimple variable + OA)

then AC 27

it (,j].~(O)A+ simple variable)

then go to AC 27

if I[,#] J (simple variable s OA)

then go to AC 30

if I(, ] OA + (simple variable))

then go to AC 30

if i[,03!T (simple variable) + OA

then ~AC 32

if I1143 cp-OA + (simple aabe

then to
then go to AC 32

if Icr,]1 siMp~e variable,+ simple variable

then E_!SAC 34

otoalarm

Notes similar code need be written for occurrence of -@

AC26: 2T AC 36

o[,*], - code line (_o OCA(O),3 e (A)....)

AC 261 I[,c]s - tOA; go to AC 25

AC27: MT AC 36



AC301 MT AC36

01o1I- cod, line (..OCA(3) Q(A). .90 ggjk AC 28

AC 32t I AC 36

o s,) - cod. line (...00 (1). e (A)._j; gok AC 28

AC 34: 3AC 36

o0,J code line LeOCA(0). e (A)); ggf&A 28

AC 361 ;A: a simple variable identifier accumulated;

go to AC 36



Appendiz 1.

1.2. In declaration a add

Switch 1: If I (, ] - letter tJbMam..& switch 5

Switch 5: A: - identifier accumilated; delta [12]: - 1

MT identifier declared; SW:-A; mu :- 0

P (1]: - tswitch', B..D expression analyser

1.2 In the expression analyzer add

1.2.1 code relating to switch

if Pi] - ':-1 P[i-2J: - 'switch' t i.z switch 3

V-oEx 7

Switch 3a P [i] i - i : - i±lJ 1.1 to Ex 7

If P[i] -, Pi-21 - *IUvitc then go switch 4

Switch 4 hni simple"(Pi-lJ)

ihw bei code constant ( e(sw) + mu: - code line (_. go to*

(P[i-l]). -)) mu: - mu 1 end

j.e bgg-n code constant (e(SW) + mu: - code lim(.go to.e(TSW)o

o1:j]: - (. go to.O,I._) eid

g switch 3 end

if Pil: - 'switch' tJe

~g4ilabel (TSW); isrt (2,C1oc3)

0,*], - (_.1.e( W))

block list (0[,*]) end

gg,.Ex 7

1,2.2, code relating to go to statements



.Z

the-i local (?Ii-1]) ten 0.1 go to 1

4 L__tp go to 2 t_

go to 1: tg&j J: - J.1; [ JI]: - code line (_. go to. e (Pri-1]).J

.o2 stateMent end e
go to 2: lin J:- J.l; )[J]: - code line (Io,. e(P[i-2])o)

ETA: - block (P[i-l)

a: - JOl; Olti] - code line (I,& e (ETA)._)
J" - Jl; 6 J]: - code line (.go to. BA go to._)

SQ-o_ Statement end end



97

PART III

A Progrsammng Manual for 2OAL

1. Introduction

20AL is a programming language for -- in the main - scientific

computation. There is, in the languap, no extensive input/output facilities.

These are provided by procedures but a few sample such will be mentioned in

the sequel.

20AL is one language with one processor even though the progeamuer

may write in 3 different modes: algebraic language, assembl1y language, or

list language and they may be mixed an desired by the programner. Thus, for

programs requiring - for reasons of speed and efficiency of storage (word

packing) -- total control over the machine's abilities the programmer may,

in continuous transition, skip into symbolic machine language.

On the other band, if he is doing extensive symbol manipulation he

may choose to program more extensively in a list formalism.

Most importantly as a program is debugged it can be altered from the

.language which it is easiest to test the logic of the program into that in which

it is most efficient to operate the program.

2. Programming Principles

The lAnguages used on computers follow very closely two fm ental

principles of computer design:

(i) The nature of storage

and (ii) The sequencing of control

The computerts storage is divided into units called nwords." These

are of fixed length--or sometime small maitiples of units of fixed length.

Each word can be identified by a natural number called an address which, by



98

the nature of mechanical devices has a range, e.g., from 0 to 215. Wordti

store numbers and consequently we mq say that an address is the name of a

problem variable if the contents of the word having that address change in the

manner specified by operations on that v~Aiable.

The storage is further characerised by destructive read-in and

non- destructive read-out meaning that each time in formation is stored in

a word the previous contents are n by the new information, However,

when information is read from the word the contents are restored on read-out.

Thus:

read in read out also read it
the "ne" the numer back
number

old number
,%- lost

In some applications the programer constructs, through programming,

A peeudo-mumory called a stack or push down list. In this memory each time a

word is read into the same "cell" the previous contents are not lost but are

pushed down deeper into the stack. Here, reading can be destructive or not as

wished. But this is accomplished by programing and not by hardar. It is

particularly easy to accomplish using T1sts,

The second characteristic is sequencing of control.

Each instruction has an identifier called its label or nam (absence

implies a blank label) and an operation part.

*In the computer each tim an operation is completed a DM is chosen

according to the rule:



99

(i) if the operation does not specifically identily the nine of

Its successor the lexicographic next is next to be eMecuted.

(i) if it does identify its successor then that on so identified

is next executed.

The source of computer flexibility is that the choice of () or (ii) in

aW instance nay be made conlitional on the consequences of already aomplished

computation.

In the case of 2 0 A the sequencing rules are slightly more complicated

by the concept of the control statement* The control statement inducesa a

sequencing control over the statements within its scope. The scope is defined

as the set of all statements following until a punctuation convention is

satisfied. The lexicographic last is called the terminal statement. Then the

abote sequencing rules hold with the additional rule:

(iii) if the current statement is the terminal of a control statement,

the successor in determined by the control statement.

Thus in 2 0AL programing the programmer must be constant]y awae of

this inter play between sequencing and assigment. of values to variables by

which his computational purpose is advanced.

There are two fundamental aspects to program ing in 2. one is the

programing of cycles or loops and the other is the ana.isis of arithmetic

expressions. The semantics of the language has already been discussed and

this manual is thus concerned with principle aid cmple.



Notes on S-205 Set 3

1% Programming of cycles or loops,,

Almost without exception every algorithm executed on computers contaiwat

least one cycle. For, without a cycle, every stop of the algorithm would be-

executable at most one time, The execution time of the algorithm could then

be of the same order as the time required to describe ito Even for algorithms

without, explicit cycles, its aailability in a standard form in a library (from

which reference and extraction are possible) imbeds the algorithm in the "library

cycletto
Extract the
algorithm identified an "eI
from the library and make
a copy of it

Employing the
current copy
execute the algorithm

For each use the re-description time is effectively zero. We turn our atten-

tion to cycles within ai.orithms,0

A chain (of instructlons) is a sequftce of instructions 1112,o*,2 n such

that for each k, 2 < k < n, Ik is the successor of Ik-1 and the predecessor of

lk1'

A chain which starts and ends at the same instruction is called a pyfJo

A cycle of instructions clearly permits the same sequence to be carried

out several tkaes, In programming we note the obvious constrants on cycles

so that they are not carried out an infinite number of times:

(1) Every cycle must possess a branch or comparison Instrtuction (eiae it

could never terminate), and

(2) At least one storage location must change its contents during the

course of a cycle satisfying (1)o

The bei.in.tion condition is of great importance ,,nd is one ofq or eombination



of Intezmediatu va.Lues

(bA relation is 1"rt satisfied (,o riot sati:fied ),,j oo x < X, or

(x #\Aanda < Y- 3 ec

in the case (a), the flow chart is of the fov.

sj7et the counterj

dpassed its
final valu" Y __

RAzcQte the Ineractiorl
of~ the cycle

In gaea the acxU~, c, stops throV an~ or a deQrasing

deteri,-zied by I xr , fd fA .ons , An obvi o j t a iVcri I Uo fa i -E 1 RIP E2 W--

a~ <

N
E"Ccute the L-se lO of



i~cd

In these cases we may write:

1. Draw the cycle chert for c-ase (b) of p~go 9,

2,, Draw the cycle chart for the description~*+

.,How wou~ld the description be modifted for the cam of (cyCli-g until

RI first becomus satisfied?

In may mmse cycico area vW 00 twr Mma of 16e G

is tho complete secifiin.x of another qycle U-3ing outW;.* nat.atiot-

rzircnts; two rnisted bioccso Igo blocl-x -vid.en trafA br r~ i0

initia'Aize; C: cheak; S; step. Using io rirL~t z~ :.&:~:2'

.,ie find tsit mt:'Ois 3Ake: CA ( b*i r~tvu" b Tc( ri- 'v '*



W03
am. ny ille ot aux,-h dymbo1d to dotrunt it itt is an 11sw xk csted tw,*ezi

ptei e ,()((O)/f has & mxm= depth of 5,,

Often several. progessionsp a&W- n,, 4are the~ sti iset of rtn trutiwc1 over

dich to cycle0  This case Wn~ be tweatsd In a, simptif. nmnner 'by inducirn, a M~tk

cycle,, k. 'which progr'esses in steps of I from~ 1 to n selecting ar4 applying eaeb.

of the progress~ions 1-n taurn to the instruactions averwhich to cycle,. The chax't

lx:~olvez a sele~ction switch q T# having n steps:

T2

A f1t

jo to Al

i~ag to~ B



104

lo Nested cycling

Order the numbers (in) Alp A2 0&, A so thhat(A j.i (A,

Start.

L'<iJ ....... ___

$op

Shared cyc1Ung

Outwid of Aiog siA, -%.th gaps it is dfftcuit to select a simlo1

f lo uning ehawed eyeizigo Nevrthelevs-onalder the problem to compate:

f ( ) for o 5 in stepa of 0oi, ioea

for x -" 0 (0o1) % whcre



105

Otherwise undefined

a a X2 VT i ntegral.

Some of the cycling here can be sharedo

The case where the extent of cyeLing is determined by a relation is

treated An a similar way except that a cycle counter may or may not be

prosent. Thus:

X ~~IA jC-A

N/
U ~ _ Stop

cycles, not on a counter, but a(meaning as long as) Ag - X I Eo The,

above chart represents Newton's method for findig the square of A.

Ewreise-.

Lo Add a counter to the abo ceahrt s as to count the nwber of cy(.es

.neot aidting.



106

2, Fur~ all lnteeri !xI;-o NT fb i -f)

are primes9 iaeog possess only 1. and theniaeivar as factorso Hint: If 1~ 8 at

onegr its largest'factor different fruca itse),f must be : ri,

3 Suppose a continiuous function f (X) is speeified for a -' X , b and. that

f(a) It f (b) < Oo let the X- intoi'cept of the stragh&. Lie between (&# f' (a)

and (bg f (b) ) be a first appoua of a zero gCf(X Using a sequenc of such

straight linev develop a vequence of approximanta temuinatitg the process as snon

as two successive element~s of the sequence differ in magnitude by loe than a

gi1ven S 0.

Z. Propositions or reations.

An influential compionent of every comxptationi Is the set of diseriaAtions

w~hich influ~ence the braxiching and eventually detwendine te mivnat:ng COndit-. Ons.

Uavh such discrindization is a question which iso each Lim.~ answered yet t;,r nio.

But~ each s~uchi question is also a VMpot-1 having a value JMi (T) or 4u....

(F)o Since propositioni take on only two vialues these may be rapreventei-. by

1. (T) or 0 (F), Thus the qaieftion: "Is D- 7? M~Y b6 treated as a propostfion

P M1 - (>7) whichn ir! rality is a VnoaitiorVL1 funetione

f and B ame wzihmtic expressionoy 6 g.# X 9 * Yr and~

and R? is ar Arjjbhmet% rftlation8 e:,,, >D p tkien (1El R E)ic eaed

an elementary (arithmotict) proposition.

Sine proposit.-ons take on the values 9 and I It Is convenient to dinle

pr,)1)03tional -wn'iables whtichi take oni on'i.y- these valueso r 4.s per ~ts to

write equ~.tions likeg' bR 2

Pr-3 poaitionial variables are tamtmr ca2lled Boolean variabii- thV4 , too ,

Coare- loze fro W ~ J.,flp..Eyrojpositione by coaibining



107

the i.tter mder basic prop-sitiowl. operationso Mhese basic qvrat0lo8 are:

(1.) Complementation (n): If P is a proposition then so is-iP defined ast

1 0

1

If P and Q are propitions then so are;

(2) PVQ defined by the table:

-- 0 0

V is al.ied the jDg2Mgjyt or, iee, PVQ is true , if either or both of

P And Q are trw.

(3), PAQ defined by the table:

PQ PAQ

111V

A is C".Lled M d , PAQ in true 5f and only if P is true and Q is true.

(4 P v Q detined by the table

~r

- is called Jxqnlicatic;,,



(5) P Q dained by the table

P p=

1 0

in called n,1jsnM. L.e* P- Q is true if and only if P and Q have

the Sam vailve

The above tables are called truth tables and each binary proposition.s&]

op, ration defines and is defined by each a table,

Unlike biary functions, involving operations on real numbers to form veal

numbers of which there are non-denumerably many, there are orn.y a finite nqiber

of binary operations mapping propositionsl variables to propsitional va Ibles

lo How nwxy such binary propositional operati ons are there?

2o If PQR, are p opositisnal variables how Man propositional tfl5 ions

of 3 variables are there?

f'lrent Start the cuimt n g anaLysis from the truth tableo

3, If < is used Na' c.veor ieSf ,ither (but not both of) P aTz.A Q

are true for P (, Q to be 6rnse comtract the truth table and rapraesneu 0 in

trimaA of (i)p (: ., (.1)

It is often quite ConVreienft to synthesise propositional eqressions from

ihe -th table. In order to do this we tLraati-gJe some prop.tt!ei:s of ti2SOS

cevationa, paricnla.1y (3.i, (2).o and (3). The fofloting idertitis a e

eaaly proved by truth tables.

(1) FPVGP)l (4) P A(6F) 0



Pxvpositions oby the distrubutive law of A over Vi

PA(Q V R) PA Q V PA Ro

Both A an4 V obey the associative law:

P- Qo R ( PQ)oR P" (Q.R);

and the comnutative law .

P*Q - QP. where ° means V A

Consequently, t.,*

(7) P V (P Q) Po

By constructing the truth tables it is demonstrated that

(8) (P VQ) -7 PA-IQ and

One definea that V is the dual of A and vice versa; and -, "is the dual of -

and vice versao

If S is a propositional expression involving only V9 A -A and

elantary propitia, then the dual of S is obtained by replaandav.in turn

from left to right each occurr eaxe of V, A p ad - by its dual.

Exaple:

S - (-IP)At?(Q V -S)) Note:Q means- 7 - Q.

then dual (S) - P V (Q V-iS) - S.

A general theorem is that: -1 S - dual (S) for any proposiLionl function.

In order not to have to write parentheses to excess, as in the case Wf

aaitbr-tic oera.tors# an asswad heirarchy of propositional operations is

defirned

-- before /A. befotv V before = before o



110

Now consider the case of a propositional biton, F, of, say, 3 vw -ablm

Pg Qq and R, i0eog F (Pp Q, R) defintV I,, the ,able of 23-8 entrlasa

000 fo
0 0 ~ 1 fl

01 0 f 2
1 0 0
i 0 1

I 1 0
1 1 1 f7

Where each fi is 0 or I,, Then F can be "#,xp-ded'" into a "tua" of eight tv woducts"S
-1PA .- QA7R Af 0 V-1PAQPA RAf V-PAQ -R A f2 VT- ,V PAQARAfTI.

foSr a A aISS given to Pq Q, and R cause one and only one of the eight Woduats

to differ, from zeao (Lee be ! ) so that its value is lAf k wnd fk is tho fte-ion

valm,1 correspm ng to th. given triplet of values for P, Q, wid R1

0 0 1 1
0 0 1 1 F - -i -PAQi--?R V--7 PA-,Q R
0 1 0 0

0 1 1 0 VPAQA !R*/PAQAf
1 0 0 01 0 1. 0 v "-P .q V 'a v.

1 1 1 I PAQA(-rR V R

1 /-.PAIQ V PA Q

S(P V Q V P AQ

P



In progromaing, propositional faction are =ed to detevrbne branching

patterns in xt-ogs~uuinge If P au SppsitIon we repreent it in flow

* Oha'tsas:8

? I and a reversal of label is

P ? Then, PVQ is represented a's -

or that obtained in pe ing Q a. P. PAQ

is h -q
m-4~--:* while QAP is that obtained in permuting Q and: P.

While the propositional affe.et of: pVQ and QVP is thesam s we i see later there

is 6o0etlmes reson to chooseQw o over the other.

We All now apply the foregoing to a Specific Impl: Evaluate and print

F (X, T) for Y.O-(1) 20 and for X0(1) .20

In Eng4lih: F(X,)- F. (X,1)- -if (2/3] i : X < 3 or 7 < X < U but

not X divides Y or X even; should it not be X2 + CX2 /3] then

1(41 121,1) z2 - 14f~f~i)unless I is even in %zich case
2S(X,T). - F (TvX) - F2 (T +. 10).

Co snts: (1) The above is 4cawat ambigmis. It can be clarfi by

requiring its statenent in an imawbignoaz problem language. (2) What prtjciely

is meant by "for T - 0(1) 20 and X a 0(1) 20"? Does it mean simultane=or

iterated cycling. What happens if U. g X? Is it the sense of the prob~lu -:hat

the scope of the first gr is "5 X 10"0 or "7 <5 X 11but not I divides 7. o

the Ipeceding mpld to "or I eXen"?



12

These A1 smilar question. can be aSoered b7, the -b of operators and

frrj at Y-OjMlQ j.=2Of

then F: I12..ntjor(*Xt2/3)

San a u it (divides(2X/2)

else, Fr Tt 2 +' ezatier (Yt 2/3) - C(Y~l) -r2 - (Y~l)x antier,



Notes on S&05 Set 4

& lwoding of algebraia formulas,

Everyone is familiar'with formaJeo Soe exmWples areg

a) t X'+ 4*
b) t (x-u z + y/ + r))

c) % @ * (r +a/x)

The weressions on the right are said to define the variables on the

left,, In omputation the counterpart is that the right hand sides are

twaluated, using the current values of the varilb es appearing there, thus

defining a value for the variable on the left, This time sequnoa is

emhaisim by using a sign like <-or Q In plave of - thub

a) ty

with this sense of s- (wvhieb will be used hereafte)., a. foribla.-

t Q.- t + x * t

has coputational maiming, ioe,.., defines a spwd.fied set of actions to

bs earried out, M-h , in Newton's mthod for (zput~ig the wve root

of a the formula

.A: +
y~eids the iterwts successfively, with each new one couputed from the

prxv-fding one,

In computation each variable may be sald to be the name o4 a otoraj

location and its conterts the (ourrent) value of the varlable. In the -Awop

@Ie the new value of x reads over the previous value any vnless eljx-



, 114

w here retained it would be lost when read over-

Mih of what we have learned about formalae is based on the assump-

tion that formulae are generally simplee ieo not too many symbols and

not too many empressions involving repeated division or expeentiation.

In nutation these assumptions are no longer gensrally true,, Thus
2 +i.

while t25ttlis quite unabiguous, is less clear unless the

printing is very precise, and then what. of ? Consequent.y, the

formulae dealt with have the property that,-

hU fortm.lae are represented as finita linear sequences of eOaractars.

Thus such formulae do not contain either superscriptsp subscripts, or

expofientso Naturally a representation needs to be introduced to take theai

place, All such representations are based on a partition of the alphabet

of reconizablo characters into disjoif* oaoses., For xample , such a

partition might be.

a) The set of operators: + " H/% "l "

b) The set of two sided delimiters: .(,t ',),,

,i) The set of numbers , ego, 2, 10,,5, llO,,

d) The set of variables: X, MoJ !!':U3,, etc,

Thase latter tw classes nu described by exapA! Miw are they to be

described a.Vpiitl y

In a subsequent set of notes a method for their formal description

will be given.

Then a fo a



eould be represented by the linear character string 2

Y (A + D I + H f(2 + 142)) )

where 4 denotes oxponentiation

The operators are, binary; They have two associated operands, eogn

In (1) for the underlined operators the associated operands are:

A + D 1 (2.1)

E2 +f 2 (2J4)

it - DI +- E (2 + R 2) (2.5)

C * (A ' I -+ Et(2 + 42) (2,6)

zad even

Y C * (A + DI + R . (2 + V, 2)'. (2,,7)

The assignment of operands to oper Aors is determimed by,

o) The direction of scan of tie formla: eog., from left to

reight 9

ad (ii) The heirarchy oV the opevitors, ego,

before * befove / before -- before + before .

Ho'eva-v al. operations withn a matching set of parentheses are accoupl:Lshed

bvffora the uperation for which the match:.ng set of parentheses delimit an

operand, as (2,3) pree'wieds (24)



Exercises.:

1. For the following,, represent the formulae by linear strings of chavacters:

+

Cv D

E** F(* 0r .. M)

X " 3 " _ __ ..

Z =X +C +EB* F

2,, For the following fboniae list the .order of operations in their

valus tlon as in (2.1 thra Z.7).-

Y =Y -', Z * R * PHI * ( A + B)

3 71e follo-ing charbs ea,,h evaluate a single fora.la, Find the;..

Q --- W y =-_

1~~~f Z -
El =iz



117

In exercise 3, the flow charts can be easily converted to20f.. de,

with the possible exception of the computation with the operator We

Lefer its analysiS. Note that the charts can still not be converted into

code until the nature of the operands and operators is clarified as to)

whether integer or fractionalsince conversion ay be required,

This elarification proceeds as followst.

The analysis should be based on a cascaded treatment of expressions, The

ikiolest expression iF that containing one operand 2, e0go, XP 3o 26P M

eto, Then the natural definition is;

The arithmtic of an 1. is that of its operand,,

1or how is the arithmatic of an operand specified? It is natural that

its- aritkuetic be unchanged during a computation, sw the rule isa

The arithmtic of an operand named by an identifier is declared by -he

prmgammer, not by virtue of its identifier form. Such a declaration will

have the fom. -

X,., N.,, TIPS, 1O0O etc.

and integer ZZ k, P1 etc,,

OperanCs -named by numbers are defined to be those nunbars, Any such

naetbor consistlag of digits alone is understood to be an integer, a,&,

11., -7, I-0 but. not 2.4' 0056, 1.5 /1 89 2 "/7.

These latter are representations of fractional numbers,

Nw if both s±iple operand&, 0- and G2 are of the same ardxeetic.



that bi +h' ession triafu d ft m them 0! OP 02 truld reasonabi.y have

that ari*thie.., However the division of two .integers does not necess-

arily produce an integer, Am does gonen-atiaon, as for exam.o0, 3t --'.

Art acceptable iml'trkon s to have two division oe- ators possessing the

sign / .id The forior way s yieldr-ds a fractional number whi.i+ the

Ist-ter al-ways y-k-cids an integer, But what intager, e,g,, 2 ~ 5 2,

47 .9 8? Goventlon has established te definition. O

a sign (a/b) Lia/bY

Thas for the aboe, 0, . - While use, of /t-mmiud give (in A tipiaal Mohin

reprsentatQ n) M857iL%350.. 125O/0052, - 5TI5000051,

I nentiation may be treated as follows for a 'b.

:A±f b is an Ltege;L aid

if b"O. then a * a , a (b timasf) and conscquently of

%he sar arith.wtic type as a.

if b;- 0, and if a 0 then Ic-,?tha saia type aEs a

else undaezinvI

If h(,M -d if a /' 0. bhen 1 (a-a ...... (The denooimat,,

has - b faator r asid is of type rsa1 -lse uedefL.ed,

if :00 thea>0 e (b* in(a)) of type fractional

if aOO, then if b>, 0 of typa fractionaL, else

LI? < ~ , a s zIdefgied.



.1,

'the wse of oziialam is very 3nfl~t3 In ma mac

* Thus

02f 0v1g.(l

defines y as the discontineus fUnction,
0 0

y-
X~l x 0

Similarly

b- (Atx:5z0 gcAz >ygoa. gAq V,(x 2!7) )V9
defines (Bnolean) b in tans of a conditional opression.

It is worthwhile to carry out by hand the followingtoptpiutations maim

exprsiorm

a i,rr. ,b I

1jAmar~ nis,j I
ri :-5;

ri n/(n + 15);

rb :- n. 6/(6* r + 0.3;)

i - n :- -2;

J :- rb-i ;

ra, :- (3 - 1) * . * (rb - 4) ;

ri :.ore+ rb+n+i+ J+ 8*rl ;

rb :- (rl - rb * n + j - ra) +(rb - 1)+ ra

3 :mn:-l+n+ (-2);

i :-n+ ra;



220

The foflamding eammle utilirne -Bo3ebn eireim

ra, 1 rb s

Boolean hap bb I

ra :-7.5;

ia =5 ;

wb -3 *ra -2 isa;

ba r- rb > i a> ra

ra t- 2* (ra -ia) -J1

ba z- ra>ia ba ;

bb t- (ba arb >i) ra<rb;

ba :- (ba bb) ;

The f lwing statmnts generate a sequence of values for SUN.

Find the first four of these values.

rML P, q" SUK

I ntga ni

n :ml;

p :-0.5;

SWM :- 0 ;

q :-I;

loops SUM := SU + n

q Z-q *p

n -- n +

gg-1 loop 3



321

5. Program Units

In a program there will be steaents and declarations, Section 4.1ol of

Part I gives the important rules of how to Join statemnts and declarations

together to form a program. The main difficulty of this section is that of

punctuation, particularly of when to write se i-colon and when not to. The

difficulty is directly connected with the use of the delimiter ". As a guide

the relevant rules my be restated as follows:

PUNCTUATION RUIX 1: The first symbol following a statement (whether

basic or not) must be one of the following three:

PUNCTUATION RULE 2: Ay sequence ... W nd E ... must always be

terminated by semi-colon or ese.

Punctuation rule 1 follows directly from the s'.ntactic rules governLig

statements (Sections 4.1.1, 4.5.1. 4o6.1, and 5.4.1). Punctuation rule 2

follows from observing that an gd whenevmr it occurs, is the last symbol

of some statement, and then applIrng punctuation rule 1.

5.1 The concept of block structure.

Block structure is critical to 20"L for it allow the efficient use

of storage through overlay. Critical to its understanding is the concept of

global and local relative to a block.



22

The concept local may be .ilustnted b7 an empl of a progrm structure

as follows

ls begin real A# B C;

2: Ps A s- B+ 2*Cg

4: Qa AM2*AsCD
5: Qs A is-2 B + C

5z D s- 24 B + A

6s Ps C -2* A-D 

7t ALI& P

as SL_.! R I

9:

1ot R go to PI

Here we have a larger block# from 1 to .11, containing as one statemmen a

smaller block frm 3 to 9. In the outer block we work with the identifiers

A0 Be and Cp which are local to this block. In the statement at 2 a value is

assigned to this Ao The inner block introduces a news local# A and a D.

This A, then, has no relation to the A of the outer blockv which is now screened.

The variables B and Ci on the other harA, are the same in both bloek. At 4

they are used to asign a value to the local A. bis value is again used to

assign a value to the local D at 5. These operations va no use whatwer .or

of the A of the outer block. At 6 a value is assigned to the non-local C,

using the local A and D. lmbels are automatically I ,lo Thus the labels Q

and P at 4 and 6 are cn4 accessible from inside the inner block., The

statement at 7 will therefore lead to the statement at 6. The 'gg.t statement

at 8, on the other hand, wi lead out of the inner block to 10 beeaums the

identifle Rj, being not declared in the inner blocks will be nm-local. The

moment this passage out of the imer block ocm m , the local variables A and D



123

a, e completely lost. The go to statement at 10 will lead to 2 because the

label P at 6 is local to the inner block and thus inaccessible from 10.

Using the above example follow the action of the following program and

find the values of those variables which are defined at the label STOP.

b~d rsiJ W, S, Bp C;

1: W -8;

2: S :3 ;

3: B :2*W-S

4: C :B -W ;

h real P,w;

W :B-2*C;

6: P ziC 2 -B

7: AA: W :P-2*W ;

8: C :C+l;

9: 1;I W > I &b M~t& A

10: S :- W- P+ S

3-1: W : W - C q S S

The secope of a label comprises, so to speak, all those state-ts from

which the label may be seen.

The concept of scope may be illustrated by the example given. The scopes

cr the different quantities are as follows:

Scope includes statements at

A and P in outr block 2, 10

B C, a". R 2, 4 ,5, 6, 7, 8, 10

Dp Q, and A w P i nne r block 4, 5, 6, 7, 8



An important stop in the planning of 20 AL program is the subdivision of

the process into parts which may convanienty be written as blocks or procteuwee,

In order to be able to do this the prograe or must have a clear idea of the

properties of these units,

Blocks are useful for expressing ouch parts of the program which form a

closed process0 A block is indispensable if in a process an array is needed

whose size depends on the results of previous calculations. Such an array must

then be local to a block. In addition an other quantity (simple variableo

label, switch, procedure) which is used only internally during the work of the

block, but which is not useful when the block is completed may be declared to

be local to the block. This is particularly useful when diferent blocks of a

program are written by different programmers. By using blogo the progrew4er

will only have to agree on the non-local identifiers of the blocks* while

inside each block the progranier is free to choose the identifiers of working

quantitisn

Procedures have two other uses:

Abbreviation of aml ad-hoc functions; and a form of eamurtication

of closed processes between programu.

In. particular they offer the optis of recursive definitions of proceues.

Any block m be converted into a procedure by adding a heading to it0

The heading wil attach an identifier to the block and usually make som or

all of the non-local identifiers formal parameters, Were the block in

question Is written specially for the program this conversion may be effinient

only if the machanim of the block is used two or more times with differet,

non-local quantities, corresponding to two or more calls of the procedure

since a call of a procedure is a more elaborate process than a simple entrance

into the corresporling block,,



Frequently the formulas of a program nay be shortened through the use

of suitable function designators. As above this will be economical on4 if the

corresponding ad-hoc procedure is used mre than awe during the program.

An example of the use of chained procedure call is furnished by the

folloving:

Compute y - H(x) dx
a

where (x) (x) O(x,t) dt
TI(M)

and G(x,t)- V/ si 2 (xt) + coS2( (1-x) t)

If the procedure SIMPS. ( Fp Lp U , )

Evaluates the integral of the function named F from L to U to a precisionA

then the program would be as follows:

MI ad H(p); r"I p

]2gjA MI C R :p 2+3xp)

ml mp -s R :p 3-2xp ;

bUj G1 t-sqrt ((sin (p x n)) 2 +(co(1 x-p) xn)) 2) d G;
H :-. SIM ( G, HO So -51O-4) nd H I

rI pMgd= SIMPS ( F, L, U, )

20' L code for a Simpson's rule

program

y-SIM ( pH,a, b,"pe5i-4) -d v.



126

6. Dwcaaratioxi

Declatio m rweazlly quite sta'sUft ftrmd moeo In the cows of

arrW8# PrOOedMMes muitobes,0 Old MMWMe.

The detailed w~fanations of Seetiois 4.2.31 - 4.2.3.3 ane relevant

in a ame likes

rMI n; a= ACl s 1

n so 2

A~n + 1] so n :- n + 2

Section 4.2.3.1 or Part I pz'oduces:

AC3] :- n so

Section 4.2.3.*2 of Part X givee the value of the ezpresuion as 4.

Section 4.2.3.3 of Part I assigns 4 to n anud AM3.

ftllmdng ~the cods given bow will clarify the. em- qenoe of nen-

dynmuic arrays

b~zin intgne ip J ; Imm man AE1:3p 1:23t C[Os2J3

CCJ-1J: AJiJ so j so i + 2 *3+ 2

A(2W1, C(3-2-3*iJ - 3] so j -- 2 1

CA [223-8 -3 :i s-k* + 3

A~cC(-i+1J/2v 4*A(1,1 -3e1]. so A~l, 24(i-i)] t- A[2#21 - h.(1l]

1 t- - A[3*2]

j so i - 33I

A~i, -J-21 ;6 CRs-1] so 7 j

A[A[2o2J, C[11 - c[O]] :- cti] s- 2 * i

STOP: ~



227

Dynamie arrm are useful In matrix routines. Thus a delaratn

" xt 1: n, 1: n] alw the block in which the delatn i beded to

Use only storage Y*eOWyp7 M~p for a 14ua~ eqution routine.

6.2. Procedures

In the case of pyoedure delamrationm the following should be rotedt

(i) The procedure declared Ja part of the block in which it is

declared so its non-declared variables my tcomimicatel with those in the block

In wehich it is inbedded.

(ii) In the case of pumeters not called by value - they are

evaluatod # ever7 time they are called. Whereas parameters called by value

.ae evaluated gW& at the very beginning of each execution of the procedure.

(M ) ,ts from a prooere v return to blocks and

conoequmntaly my cause re-initiulising of storage asi7ne hus in:

bala MI s,om A~l: 5]

S= A~l:- J1

w we 1(p) Ej. p

J-I zV'A <~i osk .- z Wn M..& L

L AiI] - x Oiat],,,

two different army waents are. anigmd the value z.



fthis the kid of sitiation wfrate to by the rmt of SOCtio Was.

of Part i my be iflutated by the following adwputa

bp~jA Msh WVs U, Q~n +2],

swdtch Q -Qi, Qo, Q3 1

gid block A

The go to statement at TT~ refers to W(.23. The deaignational a.rssion

ftr W[21 is Q~nm2]. Iato this uocreaon the variable n alto"'. owing to the

declmoation Z0 n in the. head of block A the st&twwt TT is outside the

sec" of the n of Qfn+2]. ConequU7 the 90 to StAtMnet is undefined.

As an vomc*z fo~lo the action of the following statements amd wite a

lit of the labels to icdh the gp to statements succeselvely refer ad. find the

fi alue~as -of the variablext

Wi.4i S t- SB, S2, 53, STO)P

SLI12bk W :- NW, Sta + y ~]

n a :'7

TWs g~ja S~n -4]

SB:- nt- n -lI

a -so 9 4

53: n :-n - 2

a s- n -2;

mRZg& If[n - 1]

ST'OPs



129

Macros are particularly simple to Wnuerstand. TheY ar, after .11,

blo--kB of code which awe substituted into the code whereer they are called.

After substitution their effect is ppecisely as though they had bern put there

originally by the prormms, owe xmt be carefu about the rule. for substitu-

tion of pOIerss. They are:

(i) A formi macro parameter can gWZ be an9 identifier'c For %Ul

ocaur-renes of that identifier in a Macro definitions an Instance Of A umvr call

will Car,= that identifier to be replaced in a copry of the definition by the

actual paramester. Thus the replacement of the formal, parameter X by the

string x x will not create a non-tarminating string: X x .. x ... sincQ

the replacament is into & owP Of the definition.

(ii) The actual paramter, Ir delimited by a set of mtching

parentheses repliaces the -oanuomiz n formal parfaMter With the outermost

parentheses stripped.

Thus:

UM S( As PaC)

Tj Q+~ ( C)

A call, occurring in the code:1

S (ain (p* X). (S (gin (px) y 8= ws(p )y CR42))((3 ))

wil cause

firstly x s-sin (p* X) +t

S (sin (p *~ X), y j-, co( ), (R.+ 2)

then:



130

then:
x I- six (p * X) +t

Sxs- sin (p * x) + t

y :- om (p * x)

T Q+ (R + 2)

TI Q ((( 3)))
will be produced. Notice that parenthese serve three delfiting functions in

this ezople.

7. Zo Statements

E statements are the most omplex control statemnt in the language 20 L.

Finding the values assigned to the controlled variable in the foflcdmg for

statements and the final value of as

p l P q, r, a 3 = rkm;

p :- 1 1 q s- 2 1 r s- 3 s - 0

gZk s-p q, q-pv r p -q d s a+ kJ

X=jm - q #M r i 7 * q d i :w a m- - ;

fr k -2, a, 2 tM 2 IM= 6 d a s- s+ 2 * k

"r m a- + 45, a+ 2 yIjEk a <0 do a :- a - a;

CCz k Im 1 a 1 g=1J 5 02

&Zm - 3 M - 1 VLJJ 0 &o :- a + ke !

win clarify the concept of the f= statmsie considerably.,

E= statements are particularly usefol for emecuting operations on

vectors and matrices (described in 20AL as arrays). A siqle maile :is the

addition of two vectors VA and VB to give a third VC. This mw be eqWessed as

U V B, BC [1t n]; jainm i;

t i :- 1 At= 1 A= n dg VC~iJ : VA~i] 2 VE~i]

Note that the quantity n cannot be declared in the .me block heed as the ar'vq

VA, Is, VC (cf. Section 5.2.4.2 of Part I).



131

go Lists,

T lists halm bee reported on e*leuhere. mq~pg of their e.e we

• given in the article in o rs of AO( (April 1960).

Lists are represented by X [a, b3 where,

X is the noe of the list a i p, ( , or o, m maning preft, left, or rUht-

site section, respectiey y b is- f (cur ) or *

p has a 3-bit form g f e I

e list

f 0o direct
fl indirect

g a~ non-terndnal

(1 terminal

Thus p - 101(2) or p - 5(10) mansa a direct termnal-list entry. The indirect

means referral to a word having structure zD1. sequenced b7 Tlist sequencing

modes. In particular, the referencing my be to arras declared within 20

The empty list is represented by (,) and the lists
(, 2.X I , (, [[:]#2 ,3 P (3 ),Y 1- ]

refers to 20 L objects X# 1, and Z[1,23 (arrays, variable, lists, proedures,

etc.; while a itself i, stored in the list. The arrow is emitted in the

above reprsentation.

As an ewuve conrlder the proced-e

Wad= equal ( x 78 B) IU&, n) Y; - B

1S t Xp#*) - Yp,*]

xb I p) C 0

Ala U 1OO



3.32

E t- false

exit: equal.

which checks if two list& ae equal.



IdI

"R 'feport on the 4A1OorithLmi Lancw-,>a ALGOL 60Q"s

Co~micntono of the AMH, 2 2-99-,1I4, rHay (1960)

21 "TASS, an An~ A~taibly 3 ystem for the M! 6 )O Drwm Calculator with

"I. Symiboa. 4mipu1atiaoi by Thz'eudod Lists", AoJ.Pelis and C 0,Thornton?

Coimunewtons of 'Qh AQI &, ir,4-ip4 April. (i.96o).
A

L~20 standa fo G-ZO Carnegie TeCh Algebraic Tranolator.0

'IN dix Q-'.20 Synten" Comuidcations o~f the ACIHE 192'9~ 1960

6,~ 401Vertl Of theormplos in this vection are due to ztatX miembers ofi

the Dmni~nh Roeuwtmntralmn



A L WiB ETILC TNDE ,X 01P DJET'iTt 1 0 1 1 IF OCP T, Ai N 1 N' CACT I UN T S
For X eri agae ~ 0.~~ t:.hough I-
Pow 74k- Syini$4Cobgan J,t XProce, svino 5s pG

AJU referencee ;Ire gi~van thrcra&'l section-L nunlibe.-rs 0 The references are
givenl in thl-ree groups"'

clef: Folloninbg tbe abbr-eiation, lef 11, reference to the syntact c
definittion (f1. anry) iS8 given0

synt:Foflowilng tebbeiio"yn"references to -the occurrences
in eain'itcformulae are given0  Refere-nces already quoted In the
detccm-Praxp are not repeated.

tet:olown~ tewodterW 0'duie re:'erences to d e'initlmons
given in the trext Wre r-tn

TYhe basicarmL reprezernted by cATSother than underlIned
vords have been rlett at th-.e bher-i filing.

~h xrtie :Sen tgt i ccwpiln,, the inex 0.

Ssee plus-;

eemi.nus

,see ImltipJd-0

A . see divide

rsee:,fT exoentiation

= -'- SC. TCIj-tiona 1pr, tr

'A see., -- 5% (r ,-t omea ta;- t

z ee: dnecimr po)int

1 ee: te-a

&--e colon equal

see: space

( ,see: parentheses

ci see:, subscript brac.ket

' see: string quote,



(actual Palarater ) , def 3o 2.3-,4.7 1

(actu2.1 paramet~er list), def 1. 2a,471

(actual Param~eter rart)., def' 3,,2.1. 4h,7,1

(adfdin.g operator), Olef 30931

alphabetD ex 2.1

karthmne tic textIL- _'3o6

(arithmetic e-pression)p dci' 30-1, synt 3-1.1, 30.1, 3ohltl 4c.2,,I
4o6 01p 5.~2.1 text 3.3.3

(arith1metic opera-tor)., dci' 203 text 3.3,4

arrayp text 3J 0l 0 1o

arrayq. synt 2o~5o2o], 5o.4,,

(aXT.rOr declaration) p def 15-2oJ synt 5 text 15.2-3

(array id~ntii'ierXp dci 3d-1 synt 3-,. 4."?a, 5,22 text 2.8

(iz~pay list) 5.2 -!

(array segnent) dci' 5..

(assignment statenent)D, dei'h 0,3 synt 4h1.1 toxt 1. 4.2.3

(basic statemient), daf h010J. synt 4*5o!

(basic symbol) def.~ 2

begin. s:Fnt 2,,3., 4-1-1

(block), OWI' 4,,1-1 synt 4,5,, t[ext is1, h p-Ef

(block head), def' 40 :-l

Boolean, aynt 2 i 5--3 text 5---

(Boolean expression) def 3.4,1 synt 3p 3c3ol, h0 2--'o 4o.olp b,6 0 .,

text 3,403

(Boolean factor)p dci' 31,4-.

(Boolean prima.zj) dci' 3,:,1-2

"Boolean qeconda.7), dpe- 3-4.1

2



(B3oolean tem), def 3 .

(bound pair), del' 5,2 .

(bound pair list) del' 5o.

(bracket) dcl' 2.3

(code), sy-t 5,,, texte 4.7.8 5.4.6

colon. equal-, synt 2P3q4o2ol, 4o6o1, 500.

co ma? p ynt, 2.3, 3J01l 3.ol lio6 0 , 4o7ol: 5olol:; 5oDlp 5o3als

commnent., syn~t 203

copment aonrentlonp tieet 20 3

(campound Fstatemerit) def 0 ). .1 1synt 4.60 1o text I

(cocnpoird tail).9 def.0 i40io

(conditional statenient), def 45-1, swnt 4C1 teyxt 4.5o

(dacirnal fraction) de±" -25,

(decimal1 nurnber)p d&S 2,) . tert 2.513

'decleration>p del' 5 synt 4ho101 taxt 1.,,5 (cOaipl, te sectioni)

('declarator), del' 2.3

(delimiter) del' 203 sryt 2

(doe~ignstional eprossoi)v del' 3,,6ol synt 3, 4h0 30 1, 5.3. text 3.6j3

(digit), del' 2.. synt 2, 20 ,., 2-5.1

dimensionp texct 5,2,3c,2

div-ide / ~,synt 2,,3, 3.3.1 text 3o3oh0 2

do, synt 2.3.. 4.6a

(danim7 ststtemient) de' 4,.3 syntb 4.1.1 text 4-4-3

else# synt 2093, 3 ,,41 .3 ,o 3..s 4-5,, text 4.'.,

(ampty), de' 1.1 synt 2o~l Ds64l 4 hi , 7 0lp 5otli



ends2 syn,7it 2&,: hl..l

entiterp text 3 2-5

e:pofentaticon s ~ytt 2o3p 3-3,1. text 363o43

(exyponent part)h de: 2,5,1 toxt 2e ,,

ex, s ic i)! dei f 3 synt 30,2J, 607.1 text 3 (c Or'Pletc section)

(fac-t6r )o cleff i3-3-l

IfaJlsef synrt 2r.2

,mr, .5ynt 2c> LIt,

(for'cmie det 4,., text 4.6 4

k.-Op1.4st elcirent) de' )4.6.! text 4.6.41. J4,6 ,4, a~ .2

( ,'vaal pav ruieter lis t deLf 54A
skuoal pa~rai7eter parf,4t 5oblwpet e~in

(),.' sttunA,) ~iiI.'Lsnt 40.1.1. 4.501 tst4 cmlt

(L'noAlxi.on CI rk,>dl' 3,,2J Synmt 3 3 ,Ji- b4~ ezxt323

tox stateont). rx-.' 4,3-,1 -L text, 1.3,3

ientifiex '2i.i&n 0 >i 32:-3r~h.tx ~~

(iff colauae) dci' 3c3o -1,L5O2. synt 3.,1, 3,,51. text 1432?: h3.2

(i' taitement)*,, deL' 4.)qr, text.- 4-,,32

(-;no~Hatin)~del": 3) -1

intengerp ;synnL 2oll; 5ol1 text 510

(integer)>, deff text 2o

ieii~ nt 2 ,,3 9 5:4



(label)I def 351 Bynt 4--1, 4-5-L 4.6A text 1 61L-3

(left part list), def 4h32ol

OLettber) de' CIO- syat 2p 2,h01,p 3.2o1, 4o7o-1

laoV teaxt A

(local) or own -type), def' 5-- myt 5,,2.1

(logical operator), def~ 2.3 -wmt 3.4-1 text 3.4,,5

(logical valuc) , . def±, 922. STft 23.11~

(1mower bound) del' 5.2.1 text 5.2 4

mims - syrnt 2.3, 20,5j,, 30-1 tex.t 3-3-4Ai

multiply X111, synt 2.3p 3.3.1 text 3.3 At.1~

(mna.tiplying operoitor), def 3.3,,1

Nonlocal- , taxi, hAL,3

Omunber),D deS 2.5,,1 text 2,,., 2.',

kopen st~r--ng),2 deIf 2,,6.L

(operstor) deiC 2.3

ermi s~mnt 2.3,, 5J1J. toxt 5,."1

(paramneter delimitezr) def 3.2.1y 4.7 0 . synit 5olL. text 4o?7

parentheses ()synt 2, 3 ,,2,,!, 3.3,,1, 3.-. 3-5J, h*7AL, 5eIe text

p1- j. _syrt 2,3P 2,5J, 33J O text 3 3L61

(PrjitiarY),, def 333.

proccrdur ,! synt 2-3, : c4_-

(procedure body), def 5 1,-l

(procedure deciaration) def 5.4,,1 synt 5 tes" 5, t3

(Procedure head-,gJ., del' 5,,4 . text 5,,4-3



(procedure identifier) def 3.2o, synt 3o2ol, 4o7olq 5.4o1 text h7o5.h

(procedure st ateent) )def 4,7,1 synt 4olol text 4o73

program text 'I

(proper 8tring) def 2.6.1

quantity text 2,,7

real, synt 2,3. 5olo text 5.1.3

(relation) def 3oh4l text 3.4.5

(relational operator) def 2°3°, 3o4o1

scope, text 2o7

semicolon, synt 2,h 4-1o0 54hoJl

(separator) def 23

(sequential operator) def 2.3

(iimple aritirmetic expression) def 33oi. text 3o3.3

(simple Boolean) def 3obol

(sirple designa tional expression) Ief 3, " 1,



(simzple variablIe) del' 3 L, I sy-nt 5 ,1-! text 2t63

space #, Jsywb, 2-3 text 2,,3,, 2*,6 3

(spcifcatonpart) c 5,..0 1 text 54b05

(specificator) def &~3

(specifier) del' 5,,hOI

standard function,. tex',t 3o 20 I 3o2o;5

(statemnent') dci . 0 01 syntb ho5o1) llo6o1, 5.4.1 teaxt 4~ (complete section)

statement bracketb sees- begin end

step9 sy-nt 2.1p !v,63 textil h0.60/4.2

strnLyg9 synt- Z%3p sAh0J.

(sring) dael' 2o6o'1 s:int- 3.2oJl,, 4.7oJ textI. 2C6 3

subsript9g text 3A 010 0

subscript bound, textdc 5 ,,,2. 1~

subscript bracklet synt 203, 3.p,, 3.50-t 5.2.1

(subscript variable), del' 3,1.1 text 3j1t:LA

(subiocript expr)essilon) def 3,1-1 slvnt 3. 6.3

(subscript 12ist-). dci. 3ol 1

switch ,syntA 2039 ,5o3(llp 50h0

(switch declaration) dci 5 .3,J svnt 5 text 5033

(swi itch Jesigrator) doll,"6~ text 3,,6-3

(switch identiufier) del' 3,6,,l 4yt3c,)7,,-t, 5.33.

(6-,ry+'41 list) dcif !5o'7

(termi)" e 3,3-1.

ten synt11 2.3,, 24So

then, synt 2,3, 3.3o]., 4,,5A,

transfer iunicticn., text 3a2,115

true,, synit 2,2.27



(type) del' 5.IA syvrt, 5 ,41 text 2A8

(ty3pe deca'atio).j), del' 5,,.o3 synt 5 texk, 5-1-3

(type list) del' 15,10

(uncondfitional. statpme-nt) del' hoiol., 4,5ol

(unlaba.Ued basic zitat:rnent)p dcl' W.
(unlabelled, block) dcl' 4 01 1

(urnwabelled conpound) dc' 4,-101

(unsigned integer) def 2-50 L, 3-5-.

(wns'igned number),, def '.'5- synl 3-.3Ql

until, synt 20, L4060l text 4 6 4.,2

(upper bound)., de' 5.2(,A. text 5.2,4

valuep syn-t 2.3, 5.o]1

T'alue, te-xt 2,3, 3.3c3

(value pawrt), del' 5.4a2 text 11.7.3.1

(variable) deft 3Ac.1 sYnt 3.., 3oJ4oI !! 21 4. 06,, text 3.13

(variable identif'ier),t del' 3c,ll

while, synt 2.3, 4.6.1. text 4p.6.43

The abcyve portion of' the Index is adapted from "Repoit
on -the Algoritbmic Language ALGOL 60tt which appeared
In Commications of the ACM, Vol 3p No- 5. May 1960.



S.-BOLIC GOD.NG AID LIST PROCESS3ING

address chain def 3-8.1

address expression def 3.7

address interpreter def 4o8ol

code line , def 4.801

oopyp text 3.2,4.2

elementa.ry address def 3o7o1

equivalent deolaration def 5.6.I

indirect address expression , synt 3o7.1

insert, text 3o2o4,2

instruction designator def h080

library declaration def 5o7ol

list text 3.2o4612

list procedures., text 3o2oho2

list subscript expressionq tex-u 3A,8

logic.al ex-pression d clef 30o5

macro declaration def 55o-1 text 5.5-3

,,c-ro designator de 8!..8o1

macro identifier s synt 4o8ol

macro statement def 4,099

next text 3o2.ho2

operation designator def ho8A

pair list def 5e6oi

seqo . text 3020402

shift measmre def 3oI

SIGRA/SL 9671

I 9



S' fill
F -w .0 -- -i I ~. a

EII "It~l f!iIiI Lji iJi~i~i

ll. a,, 1 ,; I - °  ,l it

asi ,il i

L I'---- ~I

I II

II

0 1411 110
- so lie I -

,~IM' I


